Byung-Chang Suh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7313694/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biophysical physiology of phosphoinositide rapid dynamics and regulation in living cells. Journal of General Physiology, 2022, 154, .	1.9	5
2	Compartmentalization of phosphatidylinositol 4,5-bisphosphate metabolism into plasma membrane liquid-ordered/raft domains. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	39
3	Differential Regulation of Ca2+-Activated Clâ^ Channel TMEM16A Splice Variants by Membrane PI(4,5)P2. International Journal of Molecular Sciences, 2021, 22, 4088.	4.1	9
4	Ethanol inhibits Kv7.2/7.3 channel open probability by reducing the PI(4,5)P ₂ sensitivity of Kv7.2 subunit. BMB Reports, 2021, 54, 311-316.	2.4	2
5	Proprioception, the regulator of motor function. BMB Reports, 2021, 54, 393-402.	2.4	12
6	Posttranscriptional modulation of KCNQ2 gene expression by the miR-106b microRNA family. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	6
7	Allosteric modulation of alternatively spliced Ca ²⁺ -activated Cl ^{â^'} channels TMEM16A by PI(4,5)P ₂ and CaMKII. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30787-30798.	7.1	17
8	Phosphatidylinositol 4,5-bisphosphate is regenerated by speeding of the PI 4-kinase pathway during long PLC activation. Journal of General Physiology, 2020, 152, .	1.9	20
9	Ethanol Elevates Excitability of Superior Cervical Ganglion Neurons by Inhibiting Kv7 Channels in a Cell Type-Specific and PI(4,5)P2-Dependent Manner. International Journal of Molecular Sciences, 2019, 20, 4419.	4.1	7
10	Rapid resensitization of ASIC2a is conferred by three amino acid residues in the N terminus. Journal of General Physiology, 2019, 151, 944-953.	1.9	1
11	Modulation mechanisms of voltage-gated calcium channels. Current Opinion in Physiology, 2018, 2, 77-83.	1.8	4
12	Translocatable voltage-gated Ca ²⁺ channel β subunits in α1–β complexes reveal competitive replacement yet no spontaneous dissociation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9934-E9943.	7.1	5
13	Molecular Mechanism of Voltage-Gated Ca2+ Channel Regulation by Membrane PIP2. Biophysical Journal, 2018, 114, 638a.	0.5	0
14	Ethanol Increases Neuronal Firing by Regulating PI(4,5)P2 Sensitivity of M-Type K+ Channels. Biophysical Journal, 2018, 114, 121a.	0.5	0
15	The HOOK region of voltage-gated Ca2+ channel \hat{l}^2 subunits senses and transmits PIP2 signals to the gate. Journal of General Physiology, 2017, 149, 261-276.	1.9	11
16	The HOOK region of $\hat{1}^2$ subunits controls gating of voltage-gated Ca2+ channels by electrostatically interacting with plasma membrane. Channels, 2017, 11, 467-475.	2.8	4
17	Stable Interaction between Voltage-Activated Ca 2+ Channel α1 and β Subunits Revealed by Translocatable β Systems. Biophysical Journal, 2017, 112, 244a.	0.5	0
18	Acid-Sensing Ion Channel 2a (ASIC2a) Promotes Surface Trafficking of ASIC2b via Heteromeric Assembly. Scientific Reports, 2016, 6, 30684.	3.3	10

BYUNG-CHANG SUH

#	Article	IF	CITATIONS
19	Ca ²⁺ controls gating of voltage-gated calcium channels by releasing the β2e subunit from the plasma membrane. Science Signaling, 2016, 9, ra67.	3.6	8
20	Phosphoinositide 5- and 3-phosphatase activities of a voltage-sensing phosphatase in living cells show identical voltage dependence. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3686-95.	7.1	35
21	PI(4,5)P 2 and L-type Ca 2+ Channels Partner Up toÂFine-Tune Ca 2+ Dynamics in β Cells. Cell Chemical Biology, 2016, 23, 753-755.	5.2	0
22	Differential interaction of β2e with phosphoinositides: A comparative study between β2e and MARCKS. Channels, 2016, 10, 238-246.	2.8	5
23	Dual Regulation of R-Type CaV2.3 Channels by M1 Muscarinic Receptors. Molecules and Cells, 2016, 39, 322-329.	2.6	12
24	ASIC2a-dependent increase of ASIC3 surface expression enhances the sustained component of the currents. BMB Reports, 2016, 49, 542-547.	2.4	6
25	Dynamic phospholipid interaction of β2e subunit regulates the gating of voltage-gated Ca2+ channels. Journal of General Physiology, 2015, 145, 529-541.	1.9	14
26	Analysis of Phosphoinositideâ€Binding Properties and Subcellular Localization of GFPâ€Fusion Proteins. Lipids, 2015, 50, 427-436.	1.7	5
27	Molecular Basis of the Membrane Interaction of the β2e Subunit of Voltage-Gated Ca2+ Channels. Biophysical Journal, 2015, 109, 922-935.	0.5	20
28	Phosphoinositides regulate ion channels. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 844-856.	2.4	264
29	Differential Regulation of Proton-Sensitive Ion Channels by Phospholipids: A Comparative Study between ASICs and TRPV1. PLoS ONE, 2015, 10, e0122014.	2.5	13
30	Five hTRPA1 Agonists Found in Indigenous Korean Mint, Agastache rugosa. PLoS ONE, 2015, 10, e0127060.	2.5	11
31	Selective Activation of hTRPV1 by N-Geranyl Cyclopropylcarboxamide, an Amiloride-Insensitive Salt Taste Enhancer. PLoS ONE, 2014, 9, e89062.	2.5	14
32	Voltage-dependent regulation of CaV2.2 channels by Gq-coupled receptor is facilitated by membrane-localized β subunit. Journal of General Physiology, 2014, 144, 297-309.	1.9	31
33	Intracellular Membrane Association of the Aplysia cAMP Phosphodiesterase Long and Short Forms via Different Targeting Mechanisms. Journal of Biological Chemistry, 2014, 289, 25797-25811.	3.4	18
34	Irreversible Binding of Ca2+ Channel β Subunit to α1B Revealed by Chemically-Inducible Dimerization System. Biophysical Journal, 2014, 106, 544a.	0.5	0
35	Membrane Phosphoinositide Turnover by Voltage Sensing Phosphatases. Biophysical Journal, 2014, 106, 514a.	0.5	0
36	Electrostatic Association of Beta-Subunits to Membrane Reduces the PIP2 Sensitivity of Ca2+ Channels. Biophysical Journal, 2013, 104, 461a.	0.5	0

BYUNG-CHANG SUH

#	Article	IF	CITATIONS
37	Acid-sensing ion channels (ASICs): therapeutic targets for neurological diseases and their regulation. BMB Reports, 2013, 46, 295-304.	2.4	85
38	Membrane-localized β-subunits alter the PIP ₂ regulation of high-voltage activated Ca ²⁺ channels. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3161-3166.	7.1	66
39	Cholesterol modulates ion channels via downâ€regulation of phosphatidylinositol 4,5â€bisphosphate. Journal of Neurochemistry, 2010, 112, 1286-1294.	3.9	38
40	SYMPOSIUM REVIEW: Phosphoinositides: lipid regulators of membrane proteins. Journal of Physiology, 2010, 588, 3179-3185.	2.9	190
41	Modulation of High-Voltage Activated Ca2+ Channels by Membrane Phosphatidylinositol 4,5-Bisphosphate. Neuron, 2010, 67, 224-238.	8.1	139
42	Probing Phosphoinositide Kinetics With A Voltage-sensitive Phosphatase. Biophysical Journal, 2009, 96, 95a.	0.5	0
43	Potentiation of PGE2-mediated cAMP production during neuronal differentiation of human neuroblastoma SK-N-BE(2)C cells. Journal of Neurochemistry, 2008, 79, 303-310.	3.9	25
44	PIP ₂ Is a Necessary Cofactor for Ion Channel Function: <scp>How</scp> and Why?. Annual Review of Biophysics, 2008, 37, 175-195.	10.0	582
45	Electrostatic Interaction of Internal Mg2+ with Membrane PIP2 Seen with KCNQ K+ Channels. Journal of General Physiology, 2007, 130, 241-256.	1.9	79
46	Regulation of KCNQ channels by manipulation of phosphoinositides. Journal of Physiology, 2007, 582, 911-916.	2.9	66
47	Electrostatic Interaction of Internal Mg ²⁺ with Membrane PIP2 Seen with KCNQ K ⁺ Channels. Journal of Cell Biology, 2007, 178, i14-i14.	5.2	0
48	Does diacylglycerol regulate KCNQ channels?. Pflugers Archiv European Journal of Physiology, 2006, 453, 293-301.	2.8	17
49	Rapid Chemically Induced Changes of PtdIns(4,5)P2 Gate KCNQ Ion Channels. Science, 2006, 314, 1454-1457.	12.6	457
50	Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate. Current Opinion in Neurobiology, 2005, 15, 370-378.	4.2	408
51	Phospholipase C in Living Cells. Journal of General Physiology, 2005, 126, 243-262.	1.9	291
52	Regulation of KCNQ2/KCNQ3 Current by G Protein Cycling. Journal of General Physiology, 2004, 123, 663-683.	1.9	118
53	Recovery from Muscarinic Modulation of M Current Channels Requires Phosphatidylinositol 4,5-Bisphosphate Synthesis. Neuron, 2002, 35, 507-520.	8.1	444