Michael J Whelan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7313546/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Application of multimedia models for understanding the environmental behavior of volatile methylsiloxanes: Fate, transport, and bioaccumulation. Integrated Environmental Assessment and Management, 2022, 18, 599-621.	2.9	5
2	Within-field spatial variability of greenhouse gas fluxes from an extensive and intensive sheep-grazed pasture. Agriculture, Ecosystems and Environment, 2021, 312, 107355.	5.3	2
3	Mechanistic Understanding of Nitrogen Behaviour in Floating Treatment Wetlands: Abatement of Ammonia Flux. IOP Conference Series: Earth and Environmental Science, 2021, 779, 012093.	0.3	1
4	Macroplastic Debris Transfer in Rivers: A Travel Distance Approach. Frontiers in Water, 2021, 3, .	2.3	25
5	Increasing plant availability of legacy phosphorus in calcareous soils using some phosphorus activators. Journal of Environmental Management, 2020, 256, 109952.	7.8	30
6	A new conceptual model of pesticide transfers from agricultural land to surface waters with a specific focus on metaldehyde. Environmental Sciences: Processes and Impacts, 2020, 22, 956-972.	3.5	4
7	On the potential of on-line free-surface constructed wetlands for attenuating pesticide losses from agricultural land to surface waters. Environmental Chemistry, 2019, 16, 563.	1.5	9
8	Uncertainty and equifinality in environmental modelling of organic pollutants with specific focus on cyclic volatile methyl siloxanes. Environmental Sciences: Processes and Impacts, 2019, 21, 1085-1098.	3.5	7
9	Microbial community composition and activity controls phosphorus transformation in rhizosphere soils of the Yeyahu Wetland in Beijing, China. Science of the Total Environment, 2018, 628-629, 1266-1277.	8.0	51
10	Fluvial organic carbon fluxes from oil palm plantations on tropical peatland. Biogeosciences, 2018, 15, 7435-7450.	3.3	41
11	A multiâ€component method to determine pesticides in surface water by liquidâ€chromatography tandem quadrupole mass spectrometry. Water and Environment Journal, 2017, 31, 380-387.	2.2	9
12	Elucidating the Behavior of Cyclic Volatile Methylsiloxanes in a Subarctic Freshwater Food Web: A Modeled and Measured Approach. Environmental Science & Technology, 2017, 51, 12489-12497.	10.0	14
13	Predicting Aspergillus fumigatus exposure from composting facilities using a dispersion model: A conditional calibration and validation. International Journal of Hygiene and Environmental Health, 2017, 220, 17-28.	4.3	13
14	Estimating Daily Reference Evapotranspiration in a Semi-Arid Region Using Remote Sensing Data. Remote Sensing, 2017, 9, 779.	4.0	20
15	Application of Satellite-Based Precipitation Estimates to Rainfall-Runoff Modelling in a Data-Scarce Semi-Arid Catchment. Climate, 2017, 5, 32.	2.8	20
16	Insensitivity of soil biological communities to phosphorus fertilization in intensively managed grassland systems. Grass and Forage Science, 2016, 71, 139-152.	2.9	17
17	The UK's total nitrogen budget from 1990 to 2020: a transition from source to sink?. Biogeochemistry, 2016, 129, 325-340.	3.5	9
18	Development and application of a catchment scale pesticide fate and transport model for use in drinking water risk assessment. Science of the Total Environment, 2016, 563-564, 434-447.	8.0	28

#	Article	IF	CITATIONS
19	The application of expert knowledge in Bayesian networks to predict soil bulk density at the landscape scale. European Journal of Soil Science, 2015, 66, 930-941.	3.9	10
20	Comment on "Unexpected Occurrence of Volatile Dimethylsiloxanes in Antarctic Soils, Vegetation, Phytoplankton, and Krill― Environmental Science & Technology, 2015, 49, 7504-7506.	10.0	8
21	On the application of Bayesian Networks in Digital Soil Mapping. Geoderma, 2015, 259-260, 134-148.	5.1	20
22	Fate and transport of petroleum hydrocarbons in engineered biopiles in polar regions. Chemosphere, 2015, 131, 232-240.	8.2	95
23	Impact of European Water Framework Directive Article 7 on Drinking Water Directive compliance for pesticides: challenges of a prevention-led approach. Water Policy, 2014, 16, 280-297.	1.5	10
24	Identifying Adaptation Options and Constraints: The Role of Agronomist Knowledge in Catchment Management Strategy. Water Resources Management, 2014, 28, 511-526.	3.9	7
25	The determination of nonylphenol and its precursors in a trickling filter wastewater treatment process. Analytical and Bioanalytical Chemistry, 2013, 405, 3243-3253.	3.7	18
26	The effects of earthworms, botanical diversity and fertiliser type on the vertical distribution of soil nutrients and plant nutrient acquisition. Biology and Fertility of Soils, 2013, 49, 1189-1201.	4.3	7
27	Influence of biochar on isoproturon partitioning and bioaccessibility in soil. Environmental Pollution, 2013, 181, 44-50.	7.5	29
28	Organic phosphorus fractionation in wetland soil profiles by chemical extraction and phosphorus-31 nuclear magnetic resonance spectroscopy. Applied Geochemistry, 2013, 33, 213-221.	3.0	31
29	Predicting rapid herbicide leaching to surface waters from an artificially drained headwater catchment using a one dimensional two-domain model coupled with a simple groundwater model. Journal of Contaminant Hydrology, 2013, 145, 67-81.	3.3	13
30	Dynamic modelling of aquatic exposure and pelagic food chain transfer of cyclic volatile methyl siloxanes in the Inner Oslofjord. Chemosphere, 2013, 93, 794-804.	8.2	28
31	Is the EU Drinking Water Directive Standard for Pesticides in Drinking Water Consistent with the Precautionary Principle?. Environmental Science & Technology, 2013, 47, 4999-5006.	10.0	54
32	Evaluating the fate and behaviour of cyclic volatile methyl siloxanes in two contrasting North American lakes using a multi-media model. Chemosphere, 2013, 91, 1566-1576.	8.2	39
33	Phosphorus sorption and buffering mechanisms in suspended sediments from the Yangtze Estuary and Hangzhou Bay, China. Biogeosciences, 2013, 10, 3341-3348.	3.3	34
34	Farming for Water Quality: Balancing Food Security and Nitrate Pollution in UK River Basins. Annals of the American Association of Geographers, 2013, 103, 397-407.	3.0	33
35	Modelling soil bulk density at the landscape scale and its contributions to C stock uncertainty. Biogeosciences, 2013, 10, 4691-4704.	3.3	14
36	Measurement and conceptual modelling of herbicide transport to field drains in a heavy clay soil with implications for catchment-scale water quality management. Science of the Total Environment, 2012, 438, 103-112.	8.0	22

#	Article	IF	CITATIONS
37	The flux of dissolved nitrogen from the UK — Evaluating the role of soils and land use. Science of the Total Environment, 2012, 434, 90-100.	8.0	24
38	The effect of triclosan on microbial community structure in three soils. Chemosphere, 2012, 89, 1-9.	8.2	27
39	Estimating surface water concentrations of "down-the-drain―chemicals in China using a global model. Environmental Pollution, 2012, 165, 233-240.	7.5	15
40	Fate of triclosan in field soils receiving sewage sludge. Environmental Pollution, 2012, 167, 101-109.	7.5	66
41	The fluvial flux of nitrate from the UK terrestrial biosphere – An estimate of national-scale in-stream nitrate loss using an export coefficient model. Journal of Hydrology, 2012, 414-415, 31-39.	5.4	23
42	Monitoring fluvial water chemistry for trend detection: hydrological variability masks trends in datasets covering fewer than 12 years. Journal of Environmental Monitoring, 2011, 13, 514.	2.1	27
43	Nitrate in United Kingdom Rivers: Policy and Its Outcomes Since 1970. Environmental Science & Technology, 2011, 45, 175-181.	10.0	60
44	Nitrate pollution in intensively farmed regions: What are the prospects for sustaining highâ€quality groundwater?. Water Resources Research, 2011, 47, .	4.2	84
45	Solvent-based washing removes lipophilic contaminant interference with phospholipid fatty acid analysis of soil communities. Soil Biology and Biochemistry, 2011, 43, 2208-2212.	8.8	4
46	Modelling long-term diffuse nitrate pollution at the catchment-scale: Data, parameter and epistemic uncertainty. Journal of Hydrology, 2011, 403, 337-351.	5.4	52
47	Effects of triclosan on soil microbial respiration. Environmental Toxicology and Chemistry, 2011, 30, 360-366.	4.3	42
48	An assessment of the risk to surface water ecosystems of groundwater P in the UK and Ireland. Science of the Total Environment, 2010, 408, 1847-1857.	8.0	73
49	Multimedia fate of petroleum hydrocarbons in the soil: Oil matrix of constructed biopiles. Chemosphere, 2010, 81, 1454-1462.	8.2	51
50	Nitrate concentrations and fluxes in the River Thames over 140 years (1868–2008): are increases irreversible?. Hydrological Processes, 2010, 24, 2657-2662.	2.6	132
51	A mass transfer model of ammonia volatilisation from anaerobic digestate. Waste Management, 2010, 30, 1808-1812.	7.4	31
52	Predicting accurate and ecologically relevant regional scale concentrations of triclosan in rivers for use in higher-tier aquatic risk assessments. Environment International, 2010, 36, 521-526.	10.0	49
53	Dynamic multi-phase partitioning of decamethylcyclopentasiloxane (D5) in river water. Water Research, 2010, 44, 3679-3686.	11.3	35
54	Long-term monitoring of river water nitrate: how much data do we need?. Journal of Environmental Monitoring, 2010, 12, 71-79.	2.1	57

#	Article	IF	CITATIONS
55	Effect of laundry activities on in-stream concentrations of linear alkylbenzene sulfonate in a small rural South African river. Science of the Total Environment, 2009, 407, 4465-4471.	8.0	13
56	Data requirements of GREAT-ER: Modelling and validation using LAS in four UK catchments. Environmental Pollution, 2009, 157, 2610-2616.	7.5	19
57	Effect of Aldrich humic acid on water–atmosphere transfer of decamethylcyclopentasiloxane. Chemosphere, 2009, 74, 1111-1116.	8.2	29
58	Continuous-flow laboratory simulation of stream water quality changes downstream of an untreated wastewater discharge. Water Research, 2009, 43, 1993-2001.	11.3	14
59	Fluvial flux of nitrogen from Great Britain 1974–2005 in the context of the terrestrial nitrogen budget of Great Britain. Global Biogeochemical Cycles, 2009, 23, .	4.9	41
60	Environmental Persistence of Organic Pollutants: Guidance for Development and Review of POP Risk Profiles. Integrated Environmental Assessment and Management, 2009, 5, 539-556.	2.9	103
61	Phosphorus in groundwater—an overlooked contributor to eutrophication?. Hydrological Processes, 2008, 22, 5121-5127.	2.6	169
62	Determination of decamethylcyclopentasiloxane in river water and final effluent by headspace gas chromatography/mass spectrometry. Journal of Chromatography A, 2008, 1212, 124-129.	3.7	105
63	Consideration of exposure and species sensitivity of triclosan in the freshwater environment. Integrated Environmental Assessment and Management, 2008, 4, 15-23.	2.9	98
64	Importance of long-term monitoring for detecting environmental change: lessons from a lowland river in south east England. Biogeosciences, 2008, 5, 1529-1535.	3.3	58
65	The behaviour of linear alkyl benzene sulphonate under direct discharge conditions in Vientiane, Lao PDR. Water Research, 2007, 41, 4730-4740.	11.3	23
66	A new generic approach for estimating the concentrations of down-the-drain chemicals at catchment and national scale. Environmental Pollution, 2007, 148, 334-342.	7.5	20
67	Predicting diffuse-source transfers of surfactants to surface waters using SWAT. Chemosphere, 2007, 66, 1336-1345.	8.2	15
68	A comparison of river water quality sampling methodologies under highly variable load conditions. Chemosphere, 2007, 66, 746-756.	8.2	34
69	Mass balance modelling of contaminants in river basins: Application of the flexible matrix approach. Chemosphere, 2007, 68, 1232-1244.	8.2	13
70	Sensitivity analysis and identification of the best evapotranspiration and runoff options for hydrological modelling in SWAT-2000. Journal of Hydrology, 2007, 332, 456-466.	5.4	155
71	Hydrological modelling of a small catchment using SWAT-2000 – Ensuring correct flow partitioning for contaminant modelling. Journal of Hydrology, 2007, 334, 64-72	5.4	56
72	A globally applicable location-specific screening model for assessing the relative risk of pesticide leaching. Science of the Total Environment, 2007, 377, 192-206.	8.0	11

#	Article	IF	CITATIONS
73	Pesticide Modelling for a Small Catchment Using SWAT-2000. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2006, 41, 1049-1070.	1.5	24
74	Modeling the fate of down-the-drain chemicals in rivers: An improved software for GREAT-ER. Environmental Modelling and Software, 2006, 21, 925-936.	4.5	47
75	Mass balance modelling of contaminants in river basins: A flexible matrix approach. Chemosphere, 2005, 61, 1458-1467.	8.2	24
76	A modelling assessment of the atmospheric fate of volatile methyl siloxanes and their reaction products. Chemosphere, 2004, 57, 1427-1437.	8.2	58
77	Modelling of spatial controls on denitrification at the landscape scale. Hydrological Processes, 2002, 16, 1437-1450.	2.6	28
78	On the relative role of hydrodynamic dispersion for river water quality. Water Resources Research, 2001, 37, 2365-2375.	4.2	22
79	A simple triangular approximation of the area function for the calculation of network hydrological response. , 1999, 13, 2639-2653.		10
80	A simple stochastic model of point source solute transport in rivers based on gauging station data with implications for sampling requirements. Water Research, 1999, 33, 3171-3181.	11.3	24
81	Spatial patterns of throughfall and mineral ion deposition in a lowland Norway spruce (Picea abies) plantation at the plot scale. Atmospheric Environment, 1998, 32, 3493-3501.	4.1	50
82	Variability in the quality and potential decomposability of Pinus sylvestris litter from sites with different soil characteristics: acid detergent fibre (ADF) and carbohydrate signatures. Soil Biology and Biochemistry, 1998, 30, 455-461.	8.8	26
83	The Characterization of a Lignin-Derived Organic Matter Fraction in Soils Developed Under Different Vegetation Types. Journal of Applied Ecology, 1997, 34, 14.	4.0	10
84	Variability in the quality of Pinus sylvestris needles and litter from sites with different soil characteristics: Lignin and phenylpropanoid signature. Soil Biology and Biochemistry, 1996, 28, 829-835.	8.8	35
85	Modelling spatial patterns of throughfall and interception loss in a Norway spruce (Picea abies) plantation at the plot scale. Journal of Hydrology, 1996, 186, 335-354.	5.4	66