Maoyu Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7312875/publications.pdf

Version: 2024-02-01

		76326	138484
59	9,889	40	58
papers	citations	h-index	g-index
59	59	59	8879
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation. Journal of the American Chemical Society, 2017, 139, 14143-14149.	13.7	1,215
2	Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nature Catalysis, 2018, 1, 935-945.	34.4	1,075
3	Nitrogenâ€Coordinated Single Cobalt Atom Catalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells. Advanced Materials, 2018, 30, 1706758.	21.0	788
4	Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nature Communications, 2018, 9, 415.	12.8	527
5	Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nature Communications, 2019, 10, 2807.	12.8	456
6	Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. Nature Communications, 2019, 10, 1711.	12.8	446
7	Ultrahigh-Loading of Ir Single Atoms on NiO Matrix to Dramatically Enhance Oxygen Evolution Reaction. Journal of the American Chemical Society, 2020, 142, 7425-7433.	13.7	430
8	Unveiling Active Sites of CO ₂ Reduction on Nitrogen-Coordinated and Atomically Dispersed Iron and Cobalt Catalysts. ACS Catalysis, 2018, 8, 3116-3122.	11,2	405
9	Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nature Energy, 2020, 5, 684-692.	39.5	365
10	Introducing Fe ²⁺ into Nickel–Iron Layered Double Hydroxide: Local Structure Modulated Water Oxidation Activity. Angewandte Chemie - International Edition, 2018, 57, 9392-9396.	13.8	284
11	Single Cobalt Sites Dispersed in Hierarchically Porous Nanofiber Networks for Durable and Highâ€Power PGMâ€Free Cathodes in Fuel Cells. Advanced Materials, 2020, 32, e2003577.	21.0	262
12	Atomically dispersed iron sites with a nitrogen–carbon coating as highly active and durable oxygen reduction catalysts for fuel cells. Nature Energy, 2022, 7, 652-663.	39.5	258
13	3D porous graphitic nanocarbon for enhancing the performance and durability of Pt catalysts: a balance between graphitization and hierarchical porosity. Energy and Environmental Science, 2019, 12, 2830-2841.	30.8	219
14	In Situ X-ray Absorption Spectroscopy Studies of Nanoscale Electrocatalysts. Nano-Micro Letters, 2019, 11, 47.	27.0	181
15	Stable, high-performance, dendrite-free, seawater-based aqueous batteries. Nature Communications, 2021, 12, 237.	12.8	174
16	S-Doped MoP Nanoporous Layer Toward High-Efficiency Hydrogen Evolution in pH-Universal Electrolyte. ACS Catalysis, 2019, 9, 651-659.	11.2	167
17	Electroreduction of CO ₂ Catalyzed by a Heterogenized Zn–Porphyrin Complex with a Redox-Innocent Metal Center. ACS Central Science, 2017, 3, 847-852.	11.3	165
18	Single Iridium Atom Doped Ni ₂ P Catalyst for Optimal Oxygen Evolution. Journal of the American Chemical Society, 2021, 143, 13605-13615.	13.7	162

#	Article	IF	Citations
19	Atomically Dispersed Single Ni Site Catalysts for Nitrogen Reduction toward Electrochemical Ammonia Synthesis Using N ₂ and H ₂ O. Small Methods, 2020, 4, 1900821.	8.6	148
20	Ultrahigh Oxygen Evolution Reaction Activity Achieved Using Ir Single Atoms on Amorphous CoO <i>_x</i> Nanosheets. ACS Catalysis, 2021, 11, 123-130.	11.2	138
21	Methanol tolerance of atomically dispersed single metal site catalysts: mechanistic understanding and high-performance direct methanol fuel cells. Energy and Environmental Science, 2020, 13, 3544-3555.	30.8	129
22	Chemical Vapor Deposition for Atomically Dispersed and Nitrogen Coordinated Single Metal Site Catalysts. Angewandte Chemie - International Edition, 2020, 59, 21698-21705.	13.8	128
23	Promoting Atomically Dispersed MnN ₄ Sites <i>via</i> Sulfur Doping for Oxygen Reduction: Unveiling Intrinsic Activity and Degradation in Fuel Cells. ACS Nano, 2021, 15, 6886-6899.	14.6	119
24	Improving Pd–N–C fuel cell electrocatalysts through fluorination-driven rearrangements of local coordination environment. Nature Energy, 2021, 6, 1144-1153.	39.5	108
25	Stabilizing atomic Pt with trapped interstitial F in alloyed PtCo nanosheets for high-performance zinc-air batteries. Energy and Environmental Science, 2020, 13, 884-895.	30.8	99
26	Atomically dispersed single Ni site catalysts for high-efficiency CO ₂ electroreduction at industrial-level current densities. Energy and Environmental Science, 2022, 15, 2108-2119.	30.8	99
27	Single-Iron Site Catalysts with Self-Assembled Dual-size Architecture and Hierarchical Porosity for Proton-Exchange Membrane Fuel Cells. Applied Catalysis B: Environmental, 2020, 279, 119400.	20.2	94
28	Boosting alkaline hydrogen evolution: the dominating role of interior modification in surface electrocatalysis. Energy and Environmental Science, 2020, 13, 3110-3118.	30.8	87
29	Introducing Fe ²⁺ into Nickel–Iron Layered Double Hydroxide: Local Structure Modulated Water Oxidation Activity. Angewandte Chemie, 2018, 130, 9536-9540.	2.0	86
30	Partialâ€Singleâ€Atom, Partialâ€Nanoparticle Composites Enhance Water Dissociation for Hydrogen Evolution. Advanced Science, 2021, 8, 2001881.	11.2	85
31	NASICON-type Na3Fe2(PO4)3 as a low-cost and high-rate anode material for aqueous sodium-ion batteries. Nano Energy, 2019, 64, 103941.	16.0	83
32	Atomically Dispersed Dualâ€Metal Site Catalysts for Enhanced CO ₂ Reduction: Mechanistic Insight into Active Site Structures. Angewandte Chemie - International Edition, 2022, 61, .	13.8	83
33	The Velociprobe: An ultrafast hard X-ray nanoprobe for high-resolution ptychographic imaging. Review of Scientific Instruments, 2019, 90, 083701.	1.3	61
34	Phthalocyanine Precursors To Construct Atomically Dispersed Iron Electrocatalysts. ACS Catalysis, 2019, 9, 6252-6261.	11.2	61
35	Porous FeCo Glassy Alloy as Bifunctional Support for Highâ€Performance Znâ€Air Battery. Advanced Energy Materials, 2021, 11, 2002204.	19.5	55
36	Influence of Fe Substitution into LaCoO ₃ Electrocatalysts on Oxygen-Reduction Activity. ACS Applied Materials & District Substitution and Substitution into LaCoO ₃ Electrocatalysts on Oxygen-Reduction Activity.	8.0	54

#	Article	IF	Citations
37	Single-Atom Nanozymes Linked Immunosorbent Assay for Sensitive Detection of A <i>β < /i> 1-40: A Biomarker of Alzheimer's Disease. Research, 2020, 2020, 4724505.</i>	5 . 7	52
38	Metal Organic Framework Derivative Improving Lithium Metal Anode Cycling. Advanced Functional Materials, 2020, 30, 1907579.	14.9	49
39	Surface oxygenation induced strong interaction between Pd catalyst and functional support for zinc–air batteries. Energy and Environmental Science, 2022, 15, 1573-1584.	30.8	49
40	Sr ₃ CrN ₃ : A New Electride with a Partially Filled <i>d</i> Shell Transition Metal. Journal of the American Chemical Society, 2019, 141, 10595-10598.	13.7	43
41	Lattice site–dependent metal leaching in perovskites toward a honeycomb-like water oxidation catalyst. Science Advances, 2021, 7, eabk1788.	10.3	41
42	Doping-modulated strain control of bifunctional electrocatalysis for rechargeable zinc–air batteries. Energy and Environmental Science, 2021, 14, 5035-5043.	30.8	39
43	Pitfalls in X-ray absorption spectroscopy analysis and interpretation: A practical guide for general users. Current Opinion in Electrochemistry, 2021, 30, 100803.	4.8	34
44	Significantly Improved Cyclability of Conversionâ€Type Transition Metal Oxyfluoride Cathodes by Homologous Passivation Layer Reconstruction. Advanced Energy Materials, 2020, 10, 1903333.	19.5	33
45	The Restructuring-Induced CoO _{<i>x</i>>/i>} Catalyst for Electrochemical Water Splitting. Jacs Au, 2021, 1, 2216-2223.	7.9	32
46	Iron-Imprinted Single-Atomic Site Catalyst-Based Nanoprobe for Detection of Hydrogen Peroxide in Living Cells. Nano-Micro Letters, 2021, 13, 146.	27.0	30
47	Binary Atomically Dispersed Metalâ€Site Catalysts with Coreâ°Shell Nanostructures for O ₂ and CO ₂ Reduction Reactions. Small Science, 2021, 1, 2100046.	9.9	29
48	Interfacial processes in electrochemical energy systems. Chemical Communications, 2021, 57, 10453-10468.	4.1	28
49	Al2O3 coated LiCoO2 as cathode for high-capacity and long-cycling Li-ion batteries. Chinese Chemical Letters, 2018, 29, 1768-1772.	9.0	27
50	Oxygen Reduction Electrocatalysis on Ordered Intermetallic Pd–Bi Electrodes Is Enhanced by a Low Coverage of Spectator Species. Journal of Physical Chemistry C, 2020, 124, 5220-5224.	3.1	25
51	Tailoring magnetic order via atomically stacking $3 < i > d < i > 5 < i > d < i > electrons to achieve high-performance spintronic devices. Applied Physics Reviews, 2020, 7, .$	11.3	18
52	The role of titanium-oxo clusters in the sulfate process for TiO ₂ production. Dalton Transactions, 2019, 48, 11086-11093.	3.3	14
53	Performance and Ongoing Development of the Velociprobe, a Fast Hard X-ray Nanoprobe for High-Resolution Ptychographic Imaging. Microscopy and Microanalysis, 2018, 24, 54-55.	0.4	13
54	Chemical Vapor Deposition for Atomically Dispersed and Nitrogen Coordinated Single Metal Site Catalysts. Angewandte Chemie, 2020, 132, 21882-21889.	2.0	10

#	Article	IF	CITATION
55	Bioinspired Activation of <scp>N₂</scp> on Asymmetrical Coordinated Fe Grafted <scp>1T MoS₂</scp> at Room Temperature ^{â€} . Chinese Journal of Chemistry, 2021, 39, 1898-1904.	4.9	7
56	Revealing the Fast and Durable Na $<$ sup $>+sup> Insertion Reactions in a Layered Na<sub>3sub>Fe<sub>3sub>(PO<sub>4sub>)<sub>4sub> Anode for Aqueous Na-Ion Batteries. ACS Materials Au, 2022, 2, 63-71.$	6.0	7
57	Controlled Synthesis of Perforated Oxide Nanosheets with High Density Nanopores Showing Superior Water Purification Performance. ACS Applied Materials & Samp; Interfaces, 2022, 14, 18513-18524.	8.0	7
58	Atomically Dispersed Dualâ€Metal Site Catalysts for Enhanced CO ₂ Reduction: Mechanistic Insight into Active Site Structures. Angewandte Chemie, 2022, 134, .	2.0	6
59	On the unusual amber coloration of nanoporous sol-gel processed Al-doped silica glass: An experimental study. Scientific Reports, 2019, 9, 12474.	3.3	O