Jeffrey A Hubbell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7312866/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature Biotechnology, 2005, 23, 47-55.	17.5	4,068
2	Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: Engineering cell-invasion characteristics. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5413-5418.	7.1	1,331
3	Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nature Biotechnology, 2007, 25, 1159-1164.	17.5	1,142
4	Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(.alphahydroxy acid) diacrylate macromers. Macromolecules, 1993, 26, 581-587.	4.8	938
5	An RCD spacing of 440 nm is sufficient for integrin alpha V beta 3-mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation Journal of Cell Biology, 1991, 114, 1089-1100.	5.2	845
6	Oxidation-responsive polymeric vesicles. Nature Materials, 2004, 3, 183-189.	27.5	798
7	Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nature Biotechnology, 2003, 21, 513-518.	17.5	797
8	Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. , 1998, 39, 266-276.		792
9	Biomaterials in Tissue Engineering. Nature Biotechnology, 1995, 13, 565-576.	17.5	773
10	Synthesis and Physicochemical Characterization of End-Linked Poly(ethylene glycol)-co-peptide Hydrogels Formed by Michael-Type Addition. Biomacromolecules, 2003, 4, 713-722.	5.4	639
11	Poly(<scp>l</scp> -lysine)- <i>g</i> -Poly(ethylene glycol) Layers on Metal Oxide Surfaces:  Attachment Mechanism and Effects of Polymer Architecture on Resistance to Protein Adsorption. Journal of Physical Chemistry B, 2000, 104, 3298-3309.	2.6	620
12	In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. Journal of Controlled Release, 2006, 112, 26-34.	9.9	605
13	Polymeric Biomaterials with Degradation Sites for Proteases Involved in Cell Migration. Macromolecules, 1999, 32, 241-244.	4.8	574
14	Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels. Biomaterials, 1998, 19, 1287-1294.	11.4	553
15	Development of fibrin derivatives for controlled release of heparin-binding growth factors. Journal of Controlled Release, 2000, 65, 389-402.	9.9	537
16	Molecularly Engineered PEG Hydrogels: A Novel Model System for Proteolytically Mediated Cell Migration. Biophysical Journal, 2005, 89, 1374-1388.	0.5	509
17	Cellâ€demanded release of VEGF from synthetic, biointeractive cellâ€ingrowth matrices for vascularized tissue growth. FASEB Journal, 2003, 17, 2260-2262.	0.5	501
18	Materials engineering for immunomodulation. Nature, 2009, 462, 449-460.	27.8	493

#	Article	IF	CITATIONS
19	Poly(l-lysine)-g-poly(ethylene glycol) Layers on Metal Oxide Surfaces:Â Surface-Analytical Characterization and Resistance to Serum and Fibrinogen Adsorption. Langmuir, 2001, 17, 489-498.	3.5	490
20	Cell-Responsive Synthetic Hydrogels. Advanced Materials, 2003, 15, 888-892.	21.0	486
21	Surface Treatments of Polymers for Biocompatibility. Annual Review of Materials Research, 1996, 26, 365-394.	5.5	479
22	Bioactive biomaterials. Current Opinion in Biotechnology, 1999, 10, 123-129.	6.6	470
23	Nanomaterials for Drug Delivery. Science, 2012, 337, 303-305.	12.6	465
24	Enhanced proteolytic degradation of molecularly engineered PEG hydrogels in response to MMP-1 and MMP-2. Biomaterials, 2010, 31, 7836-7845.	11.4	463
25	Thin Polymer Layers Formed by Polyelectrolyte Multilayer Techniques on Biological Surfaces. Langmuir, 1999, 15, 5355-5362.	3.5	427
26	PEG-SS-PPS:Â Reduction-Sensitive Disulfide Block Copolymer Vesicles for Intracellular Drug Delivery. Biomacromolecules, 2007, 8, 1966-1972.	5.4	418
27	Growth Factors Engineered for Super-Affinity to the Extracellular Matrix Enhance Tissue Healing. Science, 2014, 343, 885-888.	12.6	406
28	Controlled release of nerve growth factor from a heparin-containing fibrin-based cell ingrowth matrix. Journal of Controlled Release, 2000, 69, 149-158.	9.9	402
29	Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4563-4568.	7.1	401
30	Engineering the Growth Factor Microenvironment with Fibronectin Domains to Promote Wound and Bone Tissue Healing. Science Translational Medicine, 2011, 3, 100ra89.	12.4	391
31	Targeting dendritic cells with biomaterials: developing the next generation of vaccines. Trends in Immunology, 2006, 27, 573-579.	6.8	390
32	Convalent surface immobilization of Arg-Gly-Asp- and Tyr-Ile-Gly-Ser-Arg-containing peptides to obtain well-defined cell-adhesive substrates. Analytical Biochemistry, 1990, 187, 292-301.	2.4	389
33	Conjugate Addition Reactions Combined with Free-Radical Cross-Linking for the Design of Materials for Tissue Engineering. Biomacromolecules, 2001, 2, 430-441.	5.4	389
34	Fibrin gel as a three dimensional matrix in cardiovascular tissue engineering. European Journal of Cardio-thoracic Surgery, 2000, 17, 587-591.	1.4	379
35	Photopolymerized hyaluronic acid-based hydrogels and interpenetrating networks. Biomaterials, 2003, 24, 893-900.	11.4	373
36	Cell-Demanded Liberation of VEGF121From Fibrin Implants Induces Local and Controlled Blood Vessel Growth. Circulation Research, 2004, 94, 1124-1132.	4.5	355

#	Article	IF	CITATIONS
37	Materials as morphogenetic guides in tissue engineering. Current Opinion in Biotechnology, 2003, 14, 551-558.	6.6	352
38	Covalently conjugated VEGF–fibrin matrices for endothelialization. Journal of Controlled Release, 2001, 72, 101-113.	9.9	351
39	Systematic Modulation of Michael-Type Reactivity of Thiols through the Use of Charged Amino Acids. Bioconjugate Chemistry, 2001, 12, 1051-1056.	3.6	334
40	Engineering the Regenerative Microenvironment with Biomaterials. Advanced Healthcare Materials, 2013, 2, 57-71.	7.6	329
41	Protein delivery from materials formed by self-selective conjugate addition reactions. Journal of Controlled Release, 2001, 76, 11-25.	9.9	328
42	Biopolymeric delivery matrices for angiogenic growth factors. Cardiovascular Pathology, 2003, 12, 295-310.	1.6	321
43	Enzymatic incorporation of bioactive peptides into fibrin matrices enhances neurite extension. Nature Biotechnology, 2000, 18, 415-419.	17.5	316
44	Biologically Engineered Protein-graft-Poly(ethylene glycol) Hydrogels:Â A Cell Adhesive and Plasmin-Degradable Biosynthetic Material for Tissue Repair. Biomacromolecules, 2002, 3, 710-723.	5.4	302
45	RGDâ€grafted polyâ€lâ€lysineâ€ <i>graft</i> â€(polyethylene glycol) copolymers block nonâ€specific protein adsorption while promoting cell adhesion. Biotechnology and Bioengineering, 2003, 82, 784-790.	3.3	301
46	Network Formation and Degradation Behavior of Hydrogels Formed by Michael-Type Addition Reactions. Biomacromolecules, 2005, 6, 290-301.	5.4	301
47	Controlling integrin specificity and stem cell differentiation in 2D and 3D environments through regulation of fibronectin domain stability. Biomaterials, 2009, 30, 1089-1097.	11.4	300
48	Three-dimensional extracellular matrix-directed cardioprogenitor differentiation: Systematic modulation of a synthetic cell-responsive PEG-hydrogel. Biomaterials, 2008, 29, 2757-2766.	11.4	294
49	Biofunctional polymer nanoparticles for intra-articular targeting and retention inÂcartilage. Nature Materials, 2008, 7, 248-254.	27.5	292
50	Cross-Linking Exogenous Bifunctional Peptides into Fibrin Gels with Factor XIIIa. Bioconjugate Chemistry, 1999, 10, 75-81.	3.6	287
51	Human endothelial cell interactions with surfaceâ€coupled adhesion peptides on a nonadhesive glass substrate and two polymeric biomaterials. Journal of Biomedical Materials Research Part B, 1991, 25, 223-242.	3.1	283
52	In situ cell manipulation through enzymatic hydrogel photopatterning. Nature Materials, 2013, 12, 1072-1078.	27.5	282
53	Engineering growth factors for regenerative medicine applications. Acta Biomaterialia, 2016, 30, 1-12.	8.3	273
54	MMPâ€⊋ sensitive, VEGFâ€bearing bioactive hydrogels for promotion of vascular healing. Journal of Biomedical Materials Research Part B, 2004, 68A, 704-716.	3.1	271

#	Article	IF	CITATIONS
55	The effect of matrix characteristics on fibroblast proliferation in 3D gels. Biomaterials, 2010, 31, 8454-8464.	11.4	271
56	Endothelial Cell-Selective Materials for Tissue Engineering in the Vascular Graft Via a New Receptor. Nature Biotechnology, 1991, 9, 568-572.	17.5	265
57	Biomolecular Hydrogels Formed and Degraded via Site-Specific Enzymatic Reactions. Biomacromolecules, 2007, 8, 3000-3007.	5.4	264
58	The 12th–14th type III repeats of fibronectin function as a highly promiscuous growth factor-binding domain. FASEB Journal, 2010, 24, 4711-4721.	0.5	259
59	Solution technique to incorporate polyethylene oxide and other water-soluble polymers into surfaces of polymeric biomaterials. Biomaterials, 1991, 12, 144-153.	11.4	258
60	Targeting the tumor-draining lymph node with adjuvanted nanoparticles reshapes the anti-tumor immune response. Biomaterials, 2014, 35, 814-824.	11.4	256
61	In Vitro and in Vivo Performance of Porcine Islets Encapsulated in Interfacially Photopolymerized Poly(Ethylene Glycol) Diacrylate Membranes. Cell Transplantation, 1999, 8, 293-306.	2.5	255
62	Biomimetic materials in tissue engineering. Materials Today, 2010, 13, 14-22.	14.2	251
63	Biological responses to polyethylene oxide modified polyethylene terephthalate surfaces. Journal of Biomedical Materials Research Part B, 1991, 25, 829-843.	3.1	242
64	Glucose-oxidase Based Self-Destructing Polymeric Vesicles. Langmuir, 2004, 20, 3487-3491.	3.5	228
65	Nanoparticle conjugation of CpG enhances adjuvancy for cellular immunity and memory recall at low dose. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19902-19907.	7.1	223
66	Hollow Mesoporous Plasmonic Nanoshells for Enhanced Solar Vapor Generation. Nano Letters, 2016, 16, 2159-2167.	9.1	223
67	A sensitivity study of the key parameters in the interfacial photopolymerization of poly(ethylene) Tj ETQq1 1 0.78	4314 rgBT	Overlock 219
68	Chemisorbed poly(propylene sulphide)-based copolymers resist biomolecular interactions. Nature Materials, 2003, 2, 259-264.	27.5	214
69	Extracellular matrix-inspired growth factor delivery systems for bone regeneration. Advanced Drug Delivery Reviews, 2015, 94, 41-52.	13.7	214
70	Photopolymerized hydrogel materials for drug delivery applications. Reactive & Functional Polymers, 1995, 25, 139-147.	0.8	213
71	Synthetic extracellular matrices for in situ tissue engineering. Biotechnology and Bioengineering, 2004, 86, 27-36.	3.3	213
72	Inhibition of thrombosis and intimal thickening by in situ photopolymerization of thin hydrogel barriers Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 5967-5971.	7.1	207

#	Article	IF	CITATIONS
73	Dendritic cell activation and T cell priming with adjuvant- and antigen-loaded oxidation-sensitive polymersomes. Biomaterials, 2012, 33, 6211-6219.	11.4	206
74	Enzymatic formation of modular cell-instructive fibrin analogs for tissue engineering. Biomaterials, 2007, 28, 3856-3866.	11.4	203
75	Antigen delivery to dendritic cells by poly(propylene sulfide) nanoparticles with disulfide conjugated peptides: Cross-presentation and T cell activation. Vaccine, 2010, 28, 7897-7906.	3.8	199
76	Engineering Approaches to Immunotherapy. Science Translational Medicine, 2012, 4, 148rv9.	12.4	194
77	Bovine Primary Chondrocyte Culture in Synthetic Matrix Metalloproteinase-Sensitive Poly(ethylene) Tj ETQq1 1 0	.784314 ı 4.6	gBT /Overloc
78	Carbon Monoxide-Releasing Micelles for Immunotherapy. Journal of the American Chemical Society, 2010, 132, 18273-18280.	13.7	191
79	The selective modulation of endothelial cell mobility on RGD peptide containing surfaces by YIGSR peptides. Biomaterials, 2005, 26, 167-174.	11.4	190
80	Peptide functionalized poly(l-lysine)-g-poly(ethylene glycol) on titanium: resistance to protein adsorption in full heparinized human blood plasma. Biomaterials, 2003, 24, 4949-4958.	11.4	189
81	Surface-immobilized polyethylene oxide for bacterial repellence. Biomaterials, 1992, 13, 417-420.	11.4	188
82	Extracellular Matrix-Inspired Growth Factor Delivery Systems for Skin Wound Healing. Advances in Wound Care, 2015, 4, 479-489.	5.1	187
83	Incorporation of heparinâ€binding peptides into fibrin gels enhances neurite extension: an example of designer matrices in tissue engineering. FASEB Journal, 1999, 13, 2214-2224.	0.5	186
84	Recombinant Protein-co-PEG Networks as Cell-Adhesive and Proteolytically Degradable Hydrogel Matrixes. Part I:Â Development and Physicochemical Characteristics. Biomacromolecules, 2005, 6, 1226-1238.	5.4	185
85	MATERIALS SCIENCE: Enhancing Drug Function. Science, 2003, 300, 595-596.	12.6	181
86	Poly(ethylene glycol) hydrogels formed by conjugate addition with controllable swelling, degradation, and release of pharmaceutically active proteins. Journal of Controlled Release, 2005, 102, 619-627.	9.9	181
87	Doxorubicin encapsulation and diffusional release from stable, polymeric, hydrogel nanoparticles. European Journal of Pharmaceutical Sciences, 2006, 29, 120-129.	4.0	179
88	Polymer Networks with Grafted Cell Adhesion Peptides for Highly Biospecific Cell Adhesive Substrates. Analytical Biochemistry, 1994, 222, 380-388.	2.4	178
89	Optimization of photopolymerized bioerodible hydrogel properties for adhesion prevention. Journal of Biomedical Materials Research Part B, 1994, 28, 831-838.	3.1	176
90	Recombinant Protein-co-PEG Networks as Cell-Adhesive and Proteolytically Degradable Hydrogel Matrixes. Part II:Â Biofunctional Characteristics. Biomacromolecules, 2006, 7, 3019-3029.	5.4	176

#	Article	IF	CITATIONS
91	Rapid photopolymerization of immunoprotective gels in contact with cells and tissue. Journal of the American Chemical Society, 1992, 114, 8311-8312.	13.7	172
92	Antigens reversibly conjugated to a polymeric glyco-adjuvant induce protective humoral and cellular immunity. Nature Materials, 2019, 18, 175-185.	27.5	172
93	Development of growth factor fusion proteins for cellâ€ŧriggered drug delivery. FASEB Journal, 2001, 15, 1300-1302.	0.5	171
94	Engineering antigens for in situ erythrocyte binding induces T-cell deletion. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E60-8.	7.1	167
95	Device design and materials optimization of conformal coating for islets of Langerhans. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10514-10519.	7.1	167
96	Enhancing Efficacy of Anticancer Vaccines by Targeted Delivery to Tumor-Draining Lymph Nodes. Cancer Immunology Research, 2014, 2, 436-447.	3.4	165
97	Endothelial cell proliferation and progenitor maturation by fibrin-bound VEGF variants with differential susceptibilities to local cellular activity. Journal of Controlled Release, 2005, 101, 93-109.	9.9	163
98	Photo-crosslinked copolymers of 2-hydroxyethyl methacrylate, poly(ethylene glycol) tetra-acrylate and ethylene dimethacrylate for improving biocompatibility of biosensors. Biomaterials, 1995, 16, 389-396.	11.4	162
99	The effect of the linker on the hydrolysis rate of drug-linked ester bonds. Journal of Controlled Release, 2004, 95, 291-300.	9.9	162
100	Synthesis of Polymer Network Scaffolds from l-Lactide and Poly(ethylene glycol) and Their Interaction with Cells. Macromolecules, 1997, 30, 6077-6083.	4.8	161
101	Nanoparticle conjugation of antigen enhances cytotoxic T-cell responses in pulmonary vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E989-97.	7.1	160
102	Bone repair with a form of BMP-2 engineered for incorporation into fibrin cell ingrowth matrices. Biotechnology and Bioengineering, 2005, 89, 253-262.	3.3	159
103	Extracellular Matrix and Growth Factor Engineering for Controlled Angiogenesis in Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 2015, 3, 45.	4.1	159
104	Covalently Attached GRGD on Polymer Surfaces Promotes Biospecific Adhesion of Mammalian Cells. Annals of the New York Academy of Sciences, 1990, 589, 261-270.	3.8	158
105	Silk Hydrogels as Soft Substrates for Neural Tissue Engineering. Advanced Functional Materials, 2013, 23, 5140-5149.	14.9	157
106	Poly(ethylene oxide)-graft-poly(L-lysine) copolymers to enhance the biocompatibility of poly(L-lysine)-alginate microcapsule membranes. Biomaterials, 1992, 13, 863-870.	11.4	153
107	Primary Human and Rat β-Cells Release the Intracellular Autoantigens GAD65, IA-2, and Proinsulin in Exosomes Together With Cytokine-Induced Enhancers of Immunity. Diabetes, 2017, 66, 460-473.	0.6	152
108	Selective Molecular Assembly Patterning:Â A New Approach to Micro- and Nanochemical Patterning of Surfaces for Biological Applications. Langmuir, 2002, 18, 3281-3287.	3.5	151

#	Article	IF	CITATIONS
109	Laminin heparin-binding peptides bind to several growth factors and enhance diabetic wound healing. Nature Communications, 2018, 9, 2163.	12.8	150
110	Oxidation-Sensitive Polymeric Nanoparticles. Langmuir, 2005, 21, 411-417.	3.5	147
111	Interfacial photopolymerization of poly(ethylene glycol)-based hydrogels upon alginate-poly(l-lysine) microcapsules for enhanced biocompatibility. Biomaterials, 1993, 14, 1008-1016.	11.4	144
112	Three-dimensional Migration of Neurites Is Mediated by Adhesion Site Density and Affinity. Journal of Biological Chemistry, 2000, 275, 6813-6818.	3.4	144
113	Collagen-binding IL-12 enhances tumour inflammation and drives the complete remission of established immunologically cold mouse tumours. Nature Biomedical Engineering, 2020, 4, 531-543.	22.5	141
114	Human embryonic stem cell-derived microvascular grafts for cardiac tissue preservation after myocardial infarction. Biomaterials, 2011, 32, 1102-1109.	11.4	139
115	New Synthetic Methodologies for Amphiphilic Multiblock Copolymers of Ethylene Glycol and Propylene Sulfide. Macromolecules, 2001, 34, 8913-8917.	4.8	137
116	Long-lasting fibrin matrices ensure stable and functional angiogenesis by highly tunable, sustained delivery of recombinant VEGF ₁₆₄ . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6952-6957.	7.1	136
117	Targeted antibody and cytokine cancer immunotherapies through collagen affinity. Science Translational Medicine, 2019, 11, .	12.4	134
118	Surface physical interpenetrating networks of poly(ethylene terephthalate) and poly(ethylene oxide) with biomedical applications. Macromolecules, 1992, 25, 226-232.	4.8	131
119	Matrix-binding checkpoint immunotherapies enhance antitumor efficacy and reduce adverse events. Science Translational Medicine, 2017, 9, .	12.4	131
120	The role of actively released fibrin-conjugated VEGF for VEGF receptor 2 gene activation and the enhancement of angiogenesis. Biomaterials, 2008, 29, 1720-1729.	11.4	130
121	Peptide-matrix-mediated gene transfer of an oxygen-insensitive hypoxia-inducible factor-1α variant for local induction of angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2506-2511.	7.1	129
122	The effect of enzymatically degradable poly(ethylene glycol) hydrogels on smooth muscle cell phenotype. Biomaterials, 2008, 29, 314-326.	11.4	129
123	Toll-like receptor 8 agonist nanoparticles mimic immunomodulating effects of the live BCG vaccine and enhance neonatal innate and adaptive immune responses. Journal of Allergy and Clinical Immunology, 2017, 140, 1339-1350.	2.9	128
124	Engineering integrin signaling for promoting embryonic stem cell self-renewal in a precisely defined niche. Biomaterials, 2010, 31, 1219-1226.	11.4	127
125	Lymphatic drainage function and its immunological implications: From dendritic cell homing to vaccine design. Seminars in Immunology, 2008, 20, 147-156.	5.6	126
126	Size- and charge-dependent non-specific uptake of PEGylated nanoparticles by macrophages. International Journal of Nanomedicine, 2012, 7, 799.	6.7	126

#	Article	IF	CITATIONS
127	Fibronectin modulates macrophage adhesion and FBGC formation: The role of RGD, PHSRN, and PRRARV domains. Journal of Biomedical Materials Research Part B, 2001, 55, 79-88.	3.1	125
128	Cell-responsive hydrogel for encapsulation of vascular cells. Biomaterials, 2009, 30, 4318-4324.	11.4	125
129	Design principles for therapeutic angiogenic materials. Nature Reviews Materials, 2016, 1, .	48.7	125
130	Self-assembly and steric stabilization at heterogeneous, biological surfaces using adsorbing block copolymers. Chemistry and Biology, 1998, 5, 177-183.	6.0	124
131	Hydrogel systems for barriers and local drug delivery in the control of wound healing. Journal of Controlled Release, 1996, 39, 305-313.	9.9	122
132	Engineering complement activation on polypropylene sulfide vaccine nanoparticles. Biomaterials, 2011, 32, 2194-2203.	11.4	120
133	Force Measurements between Bacteria and Poly(ethylene glycol)-Coated Surfaces. Langmuir, 2000, 16, 9155-9158.	3.5	119
134	Densely crosslinked polymer networks of poly(ethylene glycol) in trimethylolpropane triacrylate for cell-adhesion-resistant surfaces. Journal of Biomedical Materials Research Part B, 1995, 29, 207-215.	3.1	118
135	Separation of the arterial wall from blood contact using hydrogel barriers reduces intimal thickening after balloon injury in the rat: The roles of medial and luminal factors in arterial healing. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 13188-13193.	7.1	118
136	Overcoming immunological barriers in regenerative medicine. Nature Biotechnology, 2014, 32, 786-794.	17.5	118
137	Tunable T cell immunity towards a protein antigen using polymersomes vs. solid-core nanoparticles. Biomaterials, 2013, 34, 4339-4346.	11.4	116
138	Peripherally Administered Nanoparticles Target Monocytic Myeloid Cells, Secondary Lymphoid Organs and Tumors in Mice. PLoS ONE, 2013, 8, e61646.	2.5	116
139	Towards a fully-synthetic substitute of alginate: development of a new process using thermal gelation and chemical cross-linking. Biomaterials, 2004, 25, 5115-5124.	11.4	113
140	Amphiphilic Hydrogel Nanoparticles. Preparation, Characterization, and Preliminary Assessment as New Colloidal Drug Carriers. Langmuir, 2005, 21, 2605-2613.	3.5	111
141	Tenascin C Promiscuously Binds Growth Factors via Its Fifth Fibronectin Type III-Like Domain. PLoS ONE, 2013, 8, e62076.	2.5	108
142	RGD-containing peptide GCRGYGRGDSPG reduces enhancement of osteoblast differentiation by poly(L-lysine)-graft-poly(ethylene glycol)-coated titanium surfaces. Journal of Biomedical Materials Research Part B, 2004, 68A, 458-472.	3.1	107
143	Nanoparticle conjugation and pulmonary delivery enhance the protective efficacy of Ag85B and CpG against tuberculosis. Vaccine, 2011, 29, 6959-6966.	3.8	107
144	Bone healing in the rat and dog with nonglycosylated BMP-2 demonstrating low solubility in fibrin matrices. Journal of Orthopaedic Research, 2004, 22, 376-381.	2.3	106

#	Article	IF	CITATIONS
145	Design, Characterization, and One-Point in vivo Calibration of a Subcutaneously Implanted Glucose Electrode. Analytical Chemistry, 1994, 66, 3131-3138.	6.5	103
146	TLR-3 stimulation improves anti-tumor immunity elicited by dendritic cell exosome-based vaccines in a murine model of melanoma. Scientific Reports, 2015, 5, 17622.	3.3	103
147	Improving the osteogenic potential of BMP-2 with hyaluronic acid hydrogel modified with integrin-specific fibronectin fragment. Biomaterials, 2013, 34, 704-712.	11.4	102
148	Precision Intracellular Delivery Based on Optofluidic Polymersome Rupture. ACS Nano, 2012, 6, 7850-7857.	14.6	101
149	Visualization and analysis of mural thrombogenesis on collagen, polyurethane and nylon. Biomaterials, 1986, 7, 354-363.	11.4	98
150	Lactide-Based Poly(ethylene glycol) Polymer Networks for Scaffolds in Tissue Engineering. Macromolecules, 1996, 29, 5233-5235.	4.8	98
151	Rapidly degraded terpolymers of DL-lactide, glycolide, and ?-caprolactone with increased hydrophilicity by copolymerization with polyethers. Journal of Biomedical Materials Research Part B, 1990, 24, 1397-1411.	3.1	97
152	Local Release of Fibrinolytic Agents for Adhesion Prevention. Journal of Surgical Research, 1995, 59, 759-763.	1.6	96
153	Synthetic biodegradable polymers for tissue engineering and drug delivery. Current Opinion in Solid State and Materials Science, 1998, 3, 246-251.	11.5	96
154	Blocking Adhesion to Cell and Tissue Surfaces by the Chemisorption of a Poly-l-lysine-graft-(poly(ethylene glycol); phenylboronic acid) Copolymer‖. Biomacromolecules, 2000, 1, 523-533.	5.4	96
155	Translating materials design to the clinic. Nature Materials, 2013, 12, 963-966.	27.5	96
156	Mechanisms of 3-D migration and matrix remodeling of fibroblasts within artificial ECMs. Acta Biomaterialia, 2007, 3, 615-629.	8.3	94
157	Multifunctional poly(ethylene glycol) semi-interpenetrating polymer networks as highly selective adhesive substrates for bioadhesive peptide grafting. Biotechnology and Bioengineering, 1994, 43, 772-780.	3.3	93
158	Non-viral gene delivery for local and controlled DNA release. Journal of Controlled Release, 2005, 102, 263-275.	9.9	93
159	Bone healing induced by local delivery of an engineered parathyroid hormone prodrug. Biomaterials, 2009, 30, 1763-1771.	11.4	93
160	A Novel Method for the Encapsulation of Biomolecules into Polymersomes via Direct Hydration. Langmuir, 2009, 25, 9025-9029.	3.5	93
161	A collagen-poly(lactic acid-co-É›-caprolactone) hybrid scaffold for bladder tissue regeneration. Biomaterials, 2011, 32, 3969-3976.	11.4	92
162	Local induction of lymphangiogenesis with engineered fibrin-binding VEGF-C promotes wound healing by increasing immune cell trafficking and matrix remodeling. Biomaterials, 2017, 131, 160-175.	11.4	92

#	Article	IF	CITATIONS
163	Effects of fibrinolysis on neurite growth from dorsal root ganglia cultured in two- and three-dimensional fibrin gels. Journal of Comparative Neurology, 1996, 365, 380-391.	1.6	91
164	Water-borne,in situcrosslinked biomaterials from phase-segregated precursors. Journal of Biomedical Materials Research - Part A, 2003, 64A, 447-456.	4.0	90
165	Neurite extension andin vitro myelination within three-dimensional modified fibrin matrices. Journal of Neurobiology, 2005, 63, 1-14.	3.6	90
166	Synthesis of Pyridyl Disulfide-Functionalized Nanoparticles for Conjugating Thiol-Containing Small Molecules, Peptides, and Proteins. Bioconjugate Chemistry, 2010, 21, 653-662.	3.6	90
167	Nano-sized drug-loaded micelles deliver payload to lymph node immune cells and prolong allograft survival. Journal of Controlled Release, 2011, 156, 154-160.	9.9	90
168	Pattern stability under cell culture conditions—A comparative study of patterning methods based on PLL-g-PEG background passivation. Biomaterials, 2006, 27, 2534-2541.	11.4	89
169	Intraarterial protein delivery via intimally-adherent bilayer hydrogels. Journal of Controlled Release, 2000, 64, 205-215.	9.9	87
170	PEG- <i>b</i> -PPS Diblock Copolymer Aggregates for Hydrophobic Drug Solubilization and Release: Cyclosporin A as an Example. Molecular Pharmaceutics, 2008, 5, 632-642.	4.6	87
171	Recruitment of CD103 ⁺ dendritic cells via tumor-targeted chemokine delivery enhances efficacy of checkpoint inhibitor immunotherapy. Science Advances, 2019, 5, eaay1357.	10.3	87
172	Mechanical properties, proteolytic degradability and biological modifications affect angiogenic process extension into native and modified fibrin matrices in vitro. Biomaterials, 2005, 26, 1369-1379.	11.4	85
173	Micelles for Delivery of Nitric Oxide. Journal of the American Chemical Society, 2009, 131, 14413-14418.	13.7	85
174	SPARC-derived protease substrates to enhance the plasmin sensitivity of molecularly engineered PEG hydrogels. Biomaterials, 2011, 32, 1301-1310.	11.4	84
175	Molecular Properties of Fibrin-Based Matrices for Promotion of Angiogenesis in Vitro. Microvascular Research, 2001, 62, 315-326.	2.5	83
176	Materials for cell encapsulation via a new tandem approach combining reverse thermal gelation and covalent crosslinking. Macromolecular Chemistry and Physics, 2002, 203, 1466-1472.	2.2	83
177	Engineered aprotinin for improved stability of fibrin biomaterials. Biomaterials, 2011, 32, 430-438.	11.4	81
178	The heparin binding domain of von Willebrand factor binds to growth factors and promotes angiogenesis in wound healing. Blood, 2019, 133, 2559-2569.	1.4	81
179	Diffusion NMR Spectroscopy for the Characterization of the Size and Interactions of Colloidal Matter:  The Case of Vesicles and Nanoparticles. Journal of the American Chemical Society, 2004, 126, 2142-2147.	13.7	80
180	Bioluminescence imaging of calvarial bone repair using bone marrow and adipose tissue-derived mesenchymal stem cells. Biomaterials, 2008, 29, 427-437.	11.4	80

#	Article	IF	CITATIONS
181	Engineered binding to erythrocytes induces immunological tolerance to <i>E. coli</i> asparaginase. Science Advances, 2015, 1, e1500112.	10.3	80
182	Atom Transfer Radical Polymerization as a Tool for Surface Functionalization. Advanced Materials, 2002, 14, 1239-1241.	21.0	77
183	Effects of fibrin micromorphology on neurite growth from dorsal root ganglia cultured in three-dimensional fibrin gels. Journal of Biomedical Materials Research Part B, 1998, 40, 551-559.	3.1	76
184	Evaluation of pH-dependent membrane-disruptive properties of poly(acrylic acid) derived polymers. European Journal of Pharmaceutics and Biopharmaceutics, 2003, 56, 237-246.	4.3	76
185	Enhanced Endothelial Cell Retention on Shear-Stressed Synthetic Vascular Grafts Precoated with RGD-Cross-Linked Fibrin. Tissue Engineering, 2005, 11, 887-895.	4.6	76
186	Aggregation Behavior of Poly(ethylene glycol- <i>bl</i> -propylene sulfide) Di- and Triblock Copolymers in Aqueous Solution. Langmuir, 2009, 25, 11328-11335.	3.5	76
187	A New Living Emulsion Polymerization Mechanism:Â Episulfide Anionic Polymerization. Macromolecules, 2002, 35, 8688-8693.	4.8	75
188	Controlled release nanoparticle-embedded coatings reduce the tissue reaction to neuroprostheses. Journal of Controlled Release, 2010, 145, 196-202.	9.9	75
189	Modification of islet of langerhans surfaces with immunoprotective poly(ethylene glycol) coatings via interfacial photopolymerization. Biotechnology and Bioengineering, 1994, 44, 383-386.	3.3	74
190	Discovery of a sulfated tetrapeptide that binds to vascular endothelial growth factor. Acta Biomaterialia, 2005, 1, 451-459.	8.3	73
191	Sustained release of human growth hormone from in situ forming hydrogels using self-assembly of fluoroalkyl-ended poly(ethylene glycol). Biomaterials, 2005, 26, 5259-5266.	11.4	73
192	A Bioinspired Scaffold with Anti-Inflammatory Magnesium Hydroxide and Decellularized Extracellular Matrix for Renal Tissue Regeneration. ACS Central Science, 2019, 5, 458-467.	11.3	73
193	Influence of Poly(propylene sulfide-block-ethylene glycol) Di- and Triblock Copolymer Architecture on the Formation of Molecular Adlayers on Gold Surfaces and Their Effect on Protein Resistance:  A Candidate for Surface Modification in Biosensor Research. Macromolecules, 2005, 38, 10503-10510.	4.8	72
194	Platelet active concentration profiles near growing thrombi. A mathematical consideration. Biophysical Journal, 1986, 50, 937-945.	0.5	71
195	Surface characteristics and biocompatibility of lactide-based poly(ethylene glycol) scaffolds for tissue engineering. Journal of Biomaterials Science, Polymer Edition, 1998, 9, 667-680.	3.5	71
196	Lyotropic Behavior in Water of Amphiphilic ABA Triblock Copolymers Based on Poly(propylene sulfide) and Poly(ethylene glycol). Langmuir, 2002, 18, 8324-8329.	3.5	71
197	Modified Magnesium Hydroxide Nanoparticles Inhibit the Inflammatory Response to Biodegradable Poly(lactide- <i>co</i> -glycolide) Implants. ACS Nano, 2018, 12, 6917-6925.	14.6	71
198	Adhesion Prevention with Ancrod Released via a Tissue-Adherent Hydrogel. Journal of Surgical Research, 1996, 61, 58-64.	1.6	70

#	Article	IF	CITATIONS
199	Electrochemical optical waveguide lightmode spectroscopy (EC-OWLS): A pilot study using evanescent-field optical sensing under voltage control to monitor polycationic polymer adsorption onto indium tin oxide (ITO)-coated waveguide chips. Biotechnology and Bioengineering, 2003, 82, 465-473.	3.3	69
200	Proangiogenic Hydrogels Within Macroporous Scaffolds Enhance Islet Engraftment in an Extrahepatic Site. Tissue Engineering - Part A, 2013, 19, 2544-2552.	3.1	69
201	Memory of tolerance and induction of regulatory T cells by erythrocyte-targeted antigens. Scientific Reports, 2015, 5, 15907.	3.3	69
202	Synthesis and in Vitro Characterization of an ABC Triblock Copolymer for siRNA Delivery. Bioconjugate Chemistry, 2007, 18, 736-745.	3.6	67
203	Reduction of fibrous adhesion formation by a copolymer possessing an affinity for anionic surfaces. , 1998, 42, 55-65.		66
204	Tailoring hydrogel degradation and drug release via neighboring amino acid controlled esterhydrolysis. Soft Matter, 2009, 5, 440-446.	2.7	66
205	Murine macrophage behavior on peptide-grafted polyethyleneglycol-containing networks. Biotechnology and Bioengineering, 1998, 59, 2-9.	3.3	65
206	Nanoparticle size influences the magnitude and quality of mucosal immune responses after intranasal immunization. Vaccine, 2012, 30, 7541-7546.	3.8	65
207	PPS nanoparticles as versatile delivery system to induce systemic and broad mucosal immunity after intranasal administration. Vaccine, 2011, 29, 804-812.	3.8	64
208	Protein-mediated macrophage adhesion and activation on biomaterials: a model for modulating cell behavior. Journal of Materials Science: Materials in Medicine, 1999, 10, 601-605.	3.6	63
209	Comparison of covalently and physically cross-linked polyethylene glycol-based hydrogels for the prevention of postoperative adhesions in a rat model. Biomaterials, 1995, 16, 1153-1156.	11.4	62
210	Matrix-bound sixth Ig-like domain of cell adhesion molecule L1 acts as an angiogenic factor by ligating αvβ3-integrin and activating VEGF-R2. Microvascular Research, 2004, 68, 169-178.	2.5	61
211	Michael-Type Addition as a Tool for Surface Functionalization. Bioconjugate Chemistry, 2003, 14, 967-973.	3.6	60
212	Enhanced intimal thickening of expanded polytetrafluoroethylene grafts coated with fibrin or fibrin-releasing vascular endothelial growth factor in the pig carotid artery interposition model. Journal of Thoracic and Cardiovascular Surgery, 2007, 133, 1163-1170.	0.8	60
213	Drug development: longer-lived proteins. Chemical Society Reviews, 2012, 41, 2686.	38.1	59
214	Ordering Transitions of Fluoroalkyl-Ended Poly(ethylene glycol):  Rheology and SANS. Macromolecules, 2002, 35, 4448-4457.	4.8	58
215	Poly(ethylene glycol) block copolymers. Reviews in Molecular Biotechnology, 2002, 90, 3-15.	2.8	58
216	Engineered fibrin matrices for functional display of cell membrane-bound growth factor-like activities: Study of angiogenic signaling by ephrin-B2. Biomaterials, 2004, 25, 3245-3257.	11.4	58

#	Article	IF	CITATIONS
217	Dielectrophoresis-based particle exchanger for the manipulation and surface functionalization of particles. Lab on A Chip, 2008, 8, 267-273.	6.0	58
218	RAFT Homo- and Copolymerization of <i>N</i> -Acryloyl-morpholine, Piperidine, and Azocane and Their Self-Assembled Structures. Macromolecules, 2008, 41, 1140-1150.	4.8	58
219	(Re)Building a Kidney. Journal of the American Society of Nephrology: JASN, 2017, 28, 1370-1378.	6.1	58
220	Engineered collagen-binding serum albumin as a drug conjugate carrier for cancer therapy. Science Advances, 2019, 5, eaaw6081.	10.3	58
221	Rapid Induction of Functional and Morphological Continuity between Severed Ends of Mammalian or Earthworm Myelinated Axons. Journal of Neuroscience, 1999, 19, 2442-2454.	3.6	57
222	Hydrogels with Controlled, Surface Erosion Characteristics from Self-Assembly of Fluoroalkyl-Ended Poly(ethylene glycol). Macromolecules, 2001, 34, 6409-6419.	4.8	56
223	6-Thioguanine-loaded polymeric micelles deplete myeloid-derived suppressor cells and enhance the efficacy of T cell immunotherapy in tumor-bearing mice. Cancer Immunology, Immunotherapy, 2015, 64, 1033-1046.	4.2	56
224	Fibrin gels engineered with proâ€angiogenic growth factors promote engraftment of pancreatic islets in extrahepatic sites in mice. Biotechnology and Bioengineering, 2015, 112, 1916-1926.	3.3	56
225	Surface-grafted Cell-binding Peptides in Tissue Engineering of the Vascular Graft. Annals of the New York Academy of Sciences, 1992, 665, 253-258.	3.8	55
226	Extracellular matrix in angiogenesis: dynamic structures with translational potential. Experimental Dermatology, 2011, 20, 605-613.	2.9	55
227	Technique for visualization and analysis of mural thrombogenesis. Review of Scientific Instruments, 1986, 57, 892-897.	1.3	54
228	Immunoisolation of murine islet allografts in vascularized sites through conformal coating with polyethylene glycol. American Journal of Transplantation, 2018, 18, 590-603.	4.7	53
229	Growth factors with enhanced syndecan binding generate tonic signalling and promote tissue healing. Nature Biomedical Engineering, 2020, 4, 463-475.	22.5	53
230	Compressed collagen gel: a novel scaffold for human bladder cells. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, 123-130.	2.7	51
231	Towards a fully synthetic substitute of alginate: Optimization of a thermal gelation/chemical cross-linking scheme (?tandem? gelation) for the production of beads and liquid-core capsules. Biotechnology and Bioengineering, 2004, 88, 740-749.	3.3	50
232	Thermodynamic and Kinetic Effects in the Aggregation Behavior of a Poly(ethylene glycol-b-propylene) Tj ETQq0 () 0.rgBT /C 4.8	Verlock 10 T
233	Vaccine nanocarriers: Coupling intracellular pathways and cellular biodistribution to control CD4	11.4	50 _

A novel generic platform for chemical patterning of surfaces. Progress in Surface Science, 2004, 76, 8.3 49 55-69.

#	Article	IF	CITATIONS
235	High-density collagen gel tubes as a matrix for primary human bladder smooth muscle cells. Biomaterials, 2011, 32, 1543-1548.	11.4	49
236	In-vivo performance of high-density collagen gel tubes for urethral regeneration in a rabbit model. Biomaterials, 2012, 33, 7447-7455.	11.4	49
237	Targeting inflammatory sites through collagen affinity enhances the therapeutic efficacy of anti-inflammatory antibodies. Science Advances, 2019, 5, eaay1971.	10.3	48
238	A Facile Strategy for the Modification of Polyethylene Substrates with Nonâ€Fouling, Bioactive Poly(poly(ethylene glycol) methacrylate) Brushes. Macromolecular Bioscience, 2010, 10, 101-108.	4.1	47
239	Biocompatible dispersions of carbon nanotubes: a potential tool for intracellular transport of anticancer drugs. Nanoscale, 2011, 3, 925-928.	5.6	47
240	Investigating the acoustic release of doxorubicin from targeted micelles. Colloids and Surfaces B: Biointerfaces, 2013, 101, 153-155.	5.0	47
241	Sterically blocking adhesion of cells to biological surfaces with a surface-active copolymer containing poly(ethylene glycol) and phenylboronic acid. Journal of Biomedical Materials Research Part B, 2002, 59, 618-631.	3.1	46
242	Selective molecular assembly patterning at the nanoscale: a novel platform for producing protein patterns by electron-beam lithography on SiO2/indium tin oxide-coated glass substrates. Nanotechnology, 2005, 16, 1781-1786.	2.6	46
243	A high-throughput nanoimmunoassay chip applied to large-scale vaccine adjuvant screening. Integrative Biology (United Kingdom), 2013, 5, 650-658.	1.3	46
244	Synthetically glycosylated antigens induce antigen-specific tolerance and prevent the onset of diabetes. Nature Biomedical Engineering, 2019, 3, 817-829.	22.5	46
245	Biomaterials science and high-throughput screening. Nature Biotechnology, 2004, 22, 828-829.	17.5	45
246	Glucose sensitivity through oxidation responsiveness. An example of cascade-responsive nano-sensors. Journal of Materials Chemistry, 2005, 15, 4006.	6.7	45
247	Chapter 6 Materials selection. Cardiovascular Pathology, 1993, 2, 53-71.	1.6	44
248	Functionalization of polysulfide nanoparticles and their performance as circulating carriers. Biomaterials, 2008, 29, 1958-1966.	11.4	44
249	The TLR4 Agonist Fibronectin Extra Domain A is Cryptic, Exposed by Elastase-2; use in a fibrin matrix cancer vaccine. Scientific Reports, 2015, 5, 8569.	3.3	43
250	A hydrogel system for stimulus-responsive, oxygen-sensitive in situ gelation. Journal of Biomaterials Science, Polymer Edition, 2004, 15, 895-904.	3.5	42
251	RNA Interference Targeting Hypoxia Inducible Factor 1α Reduces Post-Operative Adhesions in Rats. Journal of Surgical Research, 2007, 141, 162-170.	1.6	42
252	Nanoparticle conjugation enhances the immunomodulatory effects of intranasally delivered CpG in house dust mite-allergic mice. Scientific Reports, 2015, 5, 14274.	3.3	42

#	Article	IF	CITATIONS
253	Surface modification of poly(tetrafluoroethylene)with benzophenone and sodium hydride by ultraviolet irradiation. Journal of Polymer Science Part A, 1997, 35, 1499-1514.	2.3	40
254	Treatment of Nonunions with Nonglycosylated Recombinant Human Bone Morphogenetic Protein-2 Delivered from aFibrinMatrix. Veterinary Surgery, 2004, 33, 112-118.	1.0	40
255	Effects of Protein and Gene Transfer of the Angiopoietin-1 Fibrinogen-like Receptor-binding Domain on Endothelial and Vessel Organization. Journal of Biological Chemistry, 2005, 280, 22445-22453.	3.4	40
256	Engineered insulin-like growth factor-1 for improved smooth muscle regeneration. Biomaterials, 2012, 33, 494-503.	11.4	40
257	The promotion of endothelial cell attachment and spreading using FNIII10 fused to VEGF-A165. Biomaterials, 2013, 34, 5958-5968.	11.4	39
258	Advances in pancreatic islet monolayer culture on glass surfaces enable super-resolution microscopy and insights into beta cell ciliogenesis and proliferation. Scientific Reports, 2017, 7, 45961.	3.3	39
259	Adaptive enhanced sampling by force-biasing using neural networks. Journal of Chemical Physics, 2018, 148, 134108.	3.0	39
260	Molecular weight dependence of calcification of polyethylene glycol hydrogels. Biomaterials, 1994, 15, 921-925.	11.4	38
261	Efficacy of a resorbable hydrogel barrier, oxidized regenerated cellulose, and hyaluronic acid in the prevention of ovarian adhesions in a rabbit model. Fertility and Sterility, 1994, 62, 630-634.	1.0	38
262	Heterophilic interactions between cell adhesion molecule L1 and ?v ?3-integrin induce HUVEC process extension in vitro and angiogenesis in vivo. Angiogenesis, 2004, 7, 213-223.	7.2	38
263	A feeder-free, defined three-dimensional polyethylene glycol-based extracellular matrix niche for culture of human embryonic stem cells. Biomaterials, 2013, 34, 3571-3580.	11.4	38
264	Synthetic 3D PEG-Anisogel Tailored with Fibronectin Fragments Induce Aligned Nerve Extension. Biomacromolecules, 2019, 20, 4075-4087.	5.4	38
265	Part II: Fibroblasts preferentially migrate in the direction of principal strain. Biomechanics and Modeling in Mechanobiology, 2008, 7, 215-225.	2.8	37
266	Superparamagnetic Nanoparticles as a Powerful Systems Biology Characterization Tool in the Physiological Context. Angewandte Chemie - International Edition, 2008, 47, 7857-7860.	13.8	37
267	Engineered acellular collagen scaffold for endogenous cell guidance, a novel approach in urethral regeneration. Acta Biomaterialia, 2016, 43, 208-217.	8.3	37
268	Extracellular matrix binding mixed micelles for drug delivery applications. Journal of Controlled Release, 2009, 137, 146-151.	9.9	36
269	Improving Protein Pharmacokinetics by Engineering Erythrocyte Affinity. Molecular Pharmaceutics, 2010, 7, 2141-2147.	4.6	36
270	Lymphangiogenesis-inducing vaccines elicit potent and long-lasting T cell immunity against melanomas. Science Advances, 2021, 7, .	10.3	36

#	Article	IF	CITATIONS
271	Polymer micelles with pyridyl disulfide-coupled antigen travel through lymphatics and show enhanced cellular responses following immunization. Acta Biomaterialia, 2012, 8, 3210-3217.	8.3	35
272	Crystalline Oligo(ethylene sulfide) Domains Define Highly Stable Supramolecular Block Copolymer Assemblies. ACS Nano, 2015, 9, 6872-6881.	14.6	35
273	Improving Efficacy and Safety of Agonistic Anti-CD40 Antibody Through Extracellular Matrix Affinity. Molecular Cancer Therapeutics, 2018, 17, 2399-2411.	4.1	34
274	Biointerface Science. MRS Bulletin, 2005, 30, 175-179.	3.5	33
275	Tissue response to intraperitoneal implants of polyethylene oxide-modified polyethylene terephthalate. Biomaterials, 1992, 13, 505-510.	11.4	32
276	3D morphology of cell cultures: A quantitative approach using micrometer synchrotron light tomography. Microscopy Research and Technique, 2005, 66, 289-298.	2.2	32
277	Embryonic Stem Cell-Based Cardiopatches Improve Cardiac Function in Infarcted Rats. Stem Cells Translational Medicine, 2012, 1, 248-260.	3.3	32
278	Long-term maintenance of mouse embryonic stem cell pluripotency by manipulating integrin signaling within 3D scaffolds without active Stat3. Biomaterials, 2012, 33, 8934-8942.	11.4	32
279	Masking the immunotoxicity of interleukin-12 by fusing it with a domain of its receptor via a tumour-protease-cleavable linker. Nature Biomedical Engineering, 2022, 6, 819-829.	22.5	32
280	Polymeric endoluminal gel paving: hydrogel systems for local barrier creation and site-specific drug delivery. Advanced Drug Delivery Reviews, 1997, 24, 11-30.	13.7	31
281	Engineering antigen-specific immunological tolerance. Current Opinion in Immunology, 2015, 35, 80-88.	5.5	31
282	PPS-PEG Surface Coating to Reduce Thrombogenicity of Small Diameter ePTFE Vascular Grafts. International Journal of Artificial Organs, 2005, 28, 993-1002.	1.4	30
283	PEC-b-PPS-b-PEI micelles and PEC-b-PPS/PEC-b-PPS-b-PEI mixed micelles as non-viral vectors for plasmid DNA: Tumor immunotoxicity in B16F10 melanoma. Biomaterials, 2011, 32, 9839-9847.	11.4	30
284	<i>In Situ</i> Material Transformations in Tissue Engineering. MRS Bulletin, 1996, 21, 33-35.	3.5	29
285	Assessing the Role of Poly(ethylene glycol- <i>bl</i> propylene sulfide) (PEG-PPS) Block Copolymers in the Preparation of Carbon Nanotube Biocompatible Dispersions. Macromolecules, 2010, 43, 3429-3437.	4.8	29
286	Preparation of Well-Defined Ibuprofen Prodrug Micelles by RAFT Polymerization. Biomacromolecules, 2013, 14, 3314-3320.	5.4	29
287	Analysis of progenitor cell–scaffold combinations by in vivo non-invasive photonic imaging. Biomaterials, 2007, 28, 2718-2728.	11.4	28
288	Aberrant Accumulation of the Diabetes Autoantigen GAD65 in Golgi Membranes in Conditions of ER Stress and Autoimmunity. Diabetes, 2016, 65, 2686-2699.	0.6	28

#	Article	IF	CITATIONS
289	Precise Determination of the Hydrophobic/Hydrophilic Junction in Polymeric Vesicles. Langmuir, 2003, 19, 4852-4855.	3.5	27
290	Poly (4-vinylimidazole) as nonviral gene carrier: in vitro and in vivo transfection. Acta Biomaterialia, 2005, 1, 165-172.	8.3	27
291	Biomimetic PEG hydrogels crosslinked with minimal plasminâ€sensitive triâ€amino acid peptides. Journal of Biomedical Materials Research - Part A, 2010, 93A, 870-877.	4.0	27
292	Reduction-Sensitive Tioguanine Prodrug Micelles. Molecular Pharmaceutics, 2012, 9, 2812-2818.	4.6	27
293	Combination of Synthetic Long Peptides and XCL1 Fusion Proteins Results in Superior Tumor Control. Frontiers in Immunology, 2019, 10, 294.	4.8	27
294	VEGF-A, PDGF-BB and HB-EGF engineered for promiscuous super affinity to the extracellular matrix improve wound healing in a model of type 1 diabetes. Npj Regenerative Medicine, 2021, 6, 76.	5.2	27
295	Interfacial Reactivity of Block Copolymers:Â Understanding the Amphiphile-to-Hydrophile Transition. Langmuir, 2005, 21, 9149-9153.	3.5	26
296	Fabrication of nanopore arrays and ultrathin silicon nitride membranes by block-copolymer-assisted lithography. Nanotechnology, 2009, 20, 485303.	2.6	26
297	Fibronectin Binding Modulates CXCL11 Activity and Facilitates Wound Healing. PLoS ONE, 2013, 8, e79610.	2.5	26
298	Robust coupling of angiogenesis and osteogenesis by VEGF-decorated matrices for bone regeneration. Acta Biomaterialia, 2022, 149, 111-125.	8.3	26
299	Local modulation of intracellular calcium levels near a single-cell wound in human endothelial monolayers Arteriosclerosis and Thrombosis: A Journal of Vascular Biology, 1991, 11, 1258-1265.	3.9	25
300	Chemical tethering of motile bacteria to silicon surfaces. BioTechniques, 2009, 46, 209-216.	1.8	25
301	Photograft polymerization of acrylate monomers and macromonomers on photochemically reduced PTFE films. Journal of Polymer Science Part A, 1997, 35, 3467-3482.	2.3	24
302	Tomography studies of human foreskin fibroblasts on polymer yarns. Nuclear Instruments & Methods in Physics Research B, 2003, 200, 397-405.	1.4	24
303	Thermally-induced glass formation from hydrogel nanoparticles. Soft Matter, 2006, 2, 1067.	2.7	24
304	Engineered bridge protein with dual affinity for bone morphogenetic protein-2 and collagen enhances bone regeneration for spinal fusion. Science Advances, 2021, 7, .	10.3	24
305	Sorting Live Stem Cells Based on Sox2 mRNA Expression. PLoS ONE, 2012, 7, e49874.	2.5	24
306	Tissue engineering in the vascular graft. Cytotechnology, 1992, 10, 189-204.	1.6	23

#	Article	IF	CITATIONS
307	Facile Hydrophilic Surface Modification of Poly(tetrafluoroethylene) Using Fluoroalkyl-Terminated Poly(ethylene glycol)s. Advanced Materials, 2003, 15, 66-69.	21.0	23
308	Vesicle Photonics. Annual Review of Materials Research, 2013, 43, 283-305.	9.3	23
309	Generation of potent cellular and humoral immunity against SARS-CoV-2 antigens via conjugation to a polymeric glyco-adjuvant. Biomaterials, 2021, 278, 121159.	11.4	23
310	Engineering Targeting Materials for Therapeutic Cancer Vaccines. Frontiers in Bioengineering and Biotechnology, 2020, 8, 19.	4.1	23
311	Enhancement of bone healing using non-glycosylated rhBMP-2 released from a fibrin matrix in dogs and cats. Journal of Small Animal Practice, 2005, 46, 17-21.	1.2	22
312	VEGFR-3 Neutralization Inhibits Ovarian Lymphangiogenesis, Follicle Maturation, and Murine Pregnancy. American Journal of Pathology, 2013, 183, 1596-1607.	3.8	22
313	Kidney repair and regeneration: perspectives of the NIDDK (Re)Building a Kidney consortium. Kidney International, 2022, 101, 845-853.	5.2	22
314	N-terminal α-dystroglycan binds to different extracellular matrix molecules expressed in regenerating peripheral nerves in a protein-mediated manner and promotes neurite extension of PC12 cells. Molecular and Cellular Neurosciences, 2003, 24, 1062-1073.	2.2	21
315	Enzymatic- and temperature-sensitive controlled release of ultrasmall superparamagnetic iron oxides (USPIOs). Journal of Nanobiotechnology, 2011, 9, 7.	9.1	21
316	Clonal, Self-Renewing and Differentiating Human and Porcine Urothelial Cells, a Novel Stem Cell Population. PLoS ONE, 2014, 9, e90006.	2.5	21
317	Characterization of the Network Structure of <scp>PEG</scp> Diacrylate Hydrogels Formed in the Presence of Nâ€Vinyl Pyrrolidone. Macromolecular Reaction Engineering, 2014, 8, 314-328.	1.5	21
318	Bioluminescent and micro-computed tomography imaging of bone repair induced by fibrin-binding growth factors. Acta Biomaterialia, 2014, 10, 4377-4389.	8.3	21
319	Improved biocompatibility of polyethylenimine (PEI) as a gene carrier by conjugating urocanic acid: In vitro and in vivo. Macromolecular Research, 2015, 23, 387-395.	2.4	21
320	Kinetics of Ultrasonic Drug Delivery from Targeted Micelles. Journal of Nanoscience and Nanotechnology, 2015, 15, 2099-2104.	0.9	21
321	Polymersomes Decorated with the SARS-CoV-2 Spike Protein Receptor-Binding Domain Elicit Robust Humoral and Cellular Immunity. ACS Central Science, 2021, 7, 1368-1380.	11.3	21
322	The short-term blood biocompatibility of poly(hydroxyethyl methacrylate-co-methyl methacrylate) in an in vitro flow system measured by digital videomicroscopy. Journal of Biomaterials Science, Polymer Edition, 1989, 1, 123-146.	3.5	20
323	Chemical modification and photograft polymerization upon expanded poly(tetrafluoroethylene). Journal of Biomaterials Science, Polymer Edition, 1998, 9, 407-426.	3.5	20
324	Tissue and cell engineering. Current Opinion in Biotechnology, 2004, 15, 381-382.	6.6	20

#	Article	IF	CITATIONS
325	Molecularly Engineered Selfâ€Assembling Membranes for Cellâ€Mediated Degradation. Advanced Healthcare Materials, 2015, 4, 602-612.	7.6	20
326	Prolonged residence of an albumin–IL-4 fusion protein in secondary lymphoid organs ameliorates experimental autoimmune encephalomyelitis. Nature Biomedical Engineering, 2021, 5, 387-398.	22.5	20
327	Culture of preantral follicles in poly(ethylene) glycolâ€based, threeâ€dimensional hydrogel: a relationship between swelling ratio and follicular developments. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 319-323.	2.7	19
328	Bioengineering strategies for inducing tolerance in autoimmune diabetes. Advanced Drug Delivery Reviews, 2017, 114, 256-265.	13.7	19
329	Oxidation-sensitive polymersomes as vaccine nanocarriers enhance humoral responses against Lassa virus envelope glycoprotein. Virology, 2017, 512, 161-171.	2.4	19
330	Porphyrin-Based Photocatalytic Lithography. Langmuir, 2008, 24, 5179-5184.	3.5	18
331	A Cationic Micelle Complex Improves CD8+ T Cell Responses in Vaccination Against Unmodified Protein Antigen. ACS Biomaterials Science and Engineering, 2016, 2, 231-240.	5.2	18
332	Robust Angiogenesis and Arteriogenesis in the Skin of Diabetic Mice by Transient Delivery of Engineered VEGF and PDGF-BB Proteins in Fibrin Hydrogels. Frontiers in Bioengineering and Biotechnology, 2021, 9, 688467.	4.1	18
333	Microfluidic Assays for DNA Manipulation Based on a Block Copolymer Immobilization Strategy. Biomacromolecules, 2010, 11, 827-831.	5.4	17
334	Anomalous Sorption in Thin Films of Fluoroalkyl-Ended Poly(ethylene glycol)s. Langmuir, 2002, 18, 8241-8245.	3.5	16
335	The 12th–14th type III repeats of fibronectin function as a highly promiscuous growth factorâ€binding domain. FASEB Journal, 2010, 24, 4711-4721.	0.5	16
336	Proteolytic Processing Regulates Placental Growth Factor Activities. Journal of Biological Chemistry, 2013, 288, 17976-17989.	3.4	16
337	Fibronectin EDA and CpG synergize to enhance antigen-specific Th1 and cytotoxic responses. Vaccine, 2016, 34, 2453-2459.	3.8	16
338	Alkylated cellulosic membranes with enhanced albumin affinity: Influence of competing proteins. Journal of Biomaterials Science, Polymer Edition, 1996, 7, 563-575.	3.5	15
339	Micropatterning of gold substrates based on poly(propylene sulfide-bl-ethylene glycol), (PPS–PEG) background passivation and the molecular-assembly patterning by lift-off (MAPL) technique. Surface Science, 2008, 602, 2305-2310.	1.9	15
340	Phototocatalytic Lithography of Poly(propylene sulfide) Block Copolymers: Toward High-Throughput Nanolithography for Biomolecular Arraying Applications. Langmuir, 2009, 25, 1238-1244.	3.5	15
341	Dynamic Perspective on the Function of Thermoresponsive Nanopores from in Situ AFM and ATR-IR Investigations. Langmuir, 2010, 26, 15356-15365.	3.5	15
342	Tubular Compressed Collagen Scaffolds for Ureteral Tissue Engineering in a Flow Bioreactor System. Tissue Engineering - Part A, 2015, 21, 2334-2345.	3.1	15

#	Article	IF	CITATIONS
343	Immunoengineering approaches for cytokine therapy. American Journal of Physiology - Cell Physiology, 2021, 321, C369-C383.	4.6	15
344	ADP Receptor Antagonists and Converting Enzyme Systems Reduce Platelet Deposition onto Collagen. Thrombosis and Haemostasis, 1992, 67, 461-467.	3.4	15
345	Phase-mixed poly(ethylene glycol)/poly(trimethylolpropane triacrylate) semi-interpenetrating polymer networks obtained by rapid network formation. Journal of Polymer Science Part A, 1994, 32, 2715-2725.	2.3	14
346	Suppression of Rheumatoid Arthritis by Enhanced Lymph Node Trafficking of Engineered Interleukinâ€10 in Murine Models. Arthritis and Rheumatology, 2021, 73, 769-778.	5.6	14
347	Persistent antigen exposure via the eryptotic pathway drives terminal T cell dysfunction. Science Immunology, 2021, 6, .	11.9	13
348	Chapter 11 Pharmacologic modification of materials. Cardiovascular Pathology, 1993, 2, 121-127.	1.6	12
349	Polyimide-polyethylene glycol block copolymers: Synthesis, characterization, and initial evaluation as a biomaterial. Journal of Biomaterials Science, Polymer Edition, 1995, 6, 313-323.	3.5	12
350	Integration column: Biofunctional polymeric nanoparticles for spatio-temporal control of drug delivery and biomedical applications. Integrative Biology (United Kingdom), 2009, 1, 446.	1.3	12
351	Human Kunitz-type protease inhibitor engineered for enhanced matrix retention extends longevity of fibrin biomaterials. Biomaterials, 2017, 135, 1-9.	11.4	12
352	Physical Properties and Biodegradation of Lactide-based Poly(ethy1ene glycol) Polymer Networks for Tissue Engineering. Polymer Bulletin, 2003, 50, 107-114.	3.3	11
353	Activation of cell-survival transcription factor NFκB in L1Ig6-stimulated endothelial cells. Journal of Biomedical Materials Research - Part A, 2006, 77A, 542-550.	4.0	11
354	Artificial extracellular matrices for bone tissue engineering. Bone, 2008, 42, S72.	2.9	11
355	In vivo study of an injectable poly(acrylonitrile)-based hydrogel paste as a bulking agent for the treatment of urinary incontinence. Biomaterials, 2010, 31, 4613-4619.	11.4	11
356	Tomography studies of biological cells on polymer scaffolds. Journal of Physics Condensed Matter, 2004, 16, S3499-S3510.	1.8	10
357	Part I: A novel in-vitro system for simultaneous mechanical stimulation and time-lapse microscopy in 3D. Biomechanics and Modeling in Mechanobiology, 2008, 7, 203-214.	2.8	10
358	Analytical ultracentrifugation to support the development of biomaterials and biomedical devices. Methods, 2011, 54, 92-100.	3.8	10
359	Soluble N-Acetylgalactosamine-Modified Antigens Enhance Hepatocyte-Dependent Antigen Cross-Presentation and Result in Antigen-Specific CD8+ T Cell Tolerance Development. Frontiers in Immunology, 2021, 12, 555095.	4.8	10
360	Lymph Node-Targeted Synthetically Glycosylated Antigen Leads to Antigen-Specific Immunological Tolerance. Frontiers in Immunology, 2021, 12, 714842.	4.8	10

#	Article	IF	CITATIONS
361	Non-viral gene delivery: Multifunctional polyplexes as locally triggerable nonviral vectors. Gene Therapy, 2006, 13, 1371-1372.	4.5	9
362	Breakdown kinetics of aggregates from poly(ethylene glycolâ€ <i>bl</i> â€propylene sulfide) di―and triblock copolymers induced by a nonâ€ionic surfactant. Journal of Polymer Science Part A, 2008, 46, 2477-2487.	2.3	9
363	<i>In vitro</i> uptake of amphiphilic, hydrogel nanoparticles by J774A.1 cells. Journal of Biomedical Materials Research - Part A, 2010, 93A, 1557-1565.	4.0	9
364	Tissue, cell and engineering. Current Opinion in Biotechnology, 2013, 24, 827-829.	6.6	9
365	Murine ovarian follicle culture in PEG-hydrogel: Effects of mechanical properties and the hormones FSH and LH on development. Macromolecular Research, 2015, 23, 377-386.	2.4	9
366	Conferring extracellular matrix affinity enhances local therapeutic efficacy of anti-TNF-α antibody in a murine model of rheumatoid arthritis. Arthritis Research and Therapy, 2019, 21, 298.	3.5	9
367	MATRIX EFFECTS. , 2000, , 237-250.		9
368	Physiology in microfluidics. Nature Materials, 2008, 7, 609-610.	27.5	8
369	Porphyrin-based Photocatalytic Nanolithography. Molecular and Cellular Proteomics, 2009, 8, 1823-1831.	3.8	8
370	Trojan horses for immunotherapy. Nature Nanotechnology, 2019, 14, 196-197.	31.5	8
371	Quantitative intrinsic auto-cathodoluminescence can resolve spectral signatures of tissue-isolated collagen extracellular matrix. Communications Biology, 2019, 2, 69.	4.4	8
372	Bioactive Polymers. , 1997, , 83-95.		8
373	Platelet adhesion to polyurethane blended with polytetramethylene oxide. , 1996, 52, 81-88.		7
374	Alkylation of cellulosic membranes results in reduced complement activation. Journal of Biomaterials Science, Polymer Edition, 1996, 7, 707-714.	3.5	7
375	Surface-Immobilized Biomolecules. , 2013, , 339-349.		7
376	Nanocrystalline Oligo(ethylene sulfide)- <i>b</i> -poly(ethylene glycol) Micelles: Structure and Stability. Macromolecules, 2018, 51, 9538-9546.	4.8	7
377	The Use of Laser-Light Scattering and Controlled Shear in Platelet Aggregometry. Thrombosis and Haemostasis, 1991, 65, 601-607.	3.4	7
378	Tissue and cell engineering. Current Opinion in Biotechnology, 2003, 14, 517-519.	6.6	6

#	Article	IF	CITATIONS
379	Longer-lived proteins. Nature, 2010, 467, 1051-1052.	27.8	6
380	Designing biofunctional immunotherapies. Nature Reviews Materials, 2019, 4, 350-352.	48.7	6
381	An optimized antigen–protein fusion. Nature Biomedical Engineering, 2020, 4, 583-584.	22.5	6
382	Therapeutic use of α2-antiplasmin as an antifibrinolytic and hemostatic agent in surgery and regenerative medicine. Npj Regenerative Medicine, 2022, 7, .	5.2	6
383	Analysis of phase mixing in aged polymer networks of poly(ethylene glycol) and poly(trimethylolpropane triacrylate). Polymer, 1995, 36, 883-885.	3.8	5
384	Photopolymerized hyaluronic acid-based hydrogels and interpenetrating networks. , 2002, , 203-210.		5
385	Modified Fibrin Hydrogels stimulate Angiogenesisin vivo: potential Application to increase Perfusion of Ischemic Tissues. Materialwissenschaft Und Werkstofftechnik, 2005, 36, 768-774.	0.9	5
386	Polymers for tissue engineering. Journal of Biomaterials Science, Polymer Edition, 1998, 9, 405-406.	3.5	4
387	Functional micro-imaging of soft and hard tissue using synchrotron light. , 2004, , .		4
388	Surface Nanopatterning by Polymer Self-Assembly: from Applied Research to Industrial Applications. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2009, 22, 223-228.	0.3	4
389	Avoidance of photoactivation in the epifluorescence video microscopic observation of thrombosis. Journal of Biomedical Materials Research Part B, 1992, 26, 1535-1542.	3.1	3
390	Preface. Tissue engineering and cell therapies. Biotechnology and Bioengineering, 1994, 43, 541-541.	3.3	3
391	Photopolymerized hyaluronic acid-based hydrogels and interpenetrating networks. , 2006, , 203-210.		3
392	Matrix Effects. , 2007, , 297-308.		3
393	Rapid photopolymerization of immunoprotective gels in contact with cells and tissue. [Erratum to document cited in CA117(18):178203r]. Journal of the American Chemical Society, 1993, 115, 2548-2548.	13.7	2
394	A new-for-old urinary bladder. Nature, 1999, 398, 198-199.	27.8	2
395	Controlled Release Drug Coatings on Flexible Neural Probes. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 6613-6.	0.5	2
396	The Effect of Biodegradable Drug Release Coatings on the Electrical Characteristics of Neural		2

Electrodes., 2007, , .

#	Article	IF	CITATIONS
397	Controlled release strategies in tissue engineering. , 2008, , 455-482.		2
398	Matrix Effects. , 2014, , 407-421.		2
399	Prescription for a pharmacyte. Science Translational Medicine, 2015, 7, 291fs23.	12.4	2
400	Surface-Immobilized Biomolecules. , 2020, , 539-551.		2
401	Murine macrophage behavior on peptideâ€grafted polyethyleneglycolâ€containing networks. Biotechnology and Bioengineering, 1998, 59, 2-9.	3.3	2
402	Engineering the Cellular-Synthetic Substrate Interface. Journal of Vascular and Interventional Radiology, 1997, 8, 715-716.	0.5	1
403	Controlled Release Strategies in Tissue Engineering. , 2014, , 347-392.		1
404	Difference in suitable mechanical properties of threeâ€dimensional, synthetic scaffolds for selfâ€renewing mouse embryonic stem cells of different genetic backgrounds. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 2261-2268.	3.4	1
405	A Computational and Experimental Study of Crystallization-Driven Self-Assembly and Micelle Formation in Poly(Ethylene Glycol)-B-Oligo(Ethylene Sulfide). Biophysical Journal, 2018, 114, 528a.	0.5	1
406	Morphogenesis and tissue engineering. , 2020, , 133-144.		1
407	Effects of fibrinolysis on neurite growth from dorsal root ganglia cultured in two- and three-dimensional fibrin gels. , 1996, 365, 380.		1
408	Surface modification of poly(tetrafluoroethylene)with benzophenone and sodium hydride by ultraviolet irradiation. Journal of Polymer Science Part A, 1997, 35, 1499-1514.	2.3	1
409	Control of Healing with Photopolymerizable Biodegradable Hydrogels. , 1996, , 179-182.		1
410	Classes of Materials Used in Medicine. , 1996, , 67-I.		1
411	Overcoming transport barriers to immunotherapy. Drug Delivery and Translational Research, 2021, 11, 2273-2275.	5.8	1
412	Matrix-bound growth factors in tissue repair. Swiss Medical Weekly, 2007, 137 Suppl 155, 72S-76S.	1.6	1
413	Title is missing!. Biomaterials, 2000, 21, 2213.	11.4	0
414	Synthetic Biomaterials as Cell-Responsive Artificial Extracellular Matrices. , 2008, , 255-278.		0

24

#	Article	IF	CITATIONS
415	Surface optofluidics. , 2010, , .		0
416	Vesicle photonics in biology with a focus on single cell analysis. , 2014, , .		0
417	Cytoplasmic Stopped Flow at the Single Cell Level Based on Photosensitive Polymersomes. Biophysical Journal, 2014, 106, 420a.	0.5	0
418	Solar-vapor generation with 69% energy conversion efficiency in hollow-mesoporous plasmonic nanoshells. , 2017, , .		0
419	Efficient Solar-Vapor Generation in Hollow-Mesoporous Plasmonic Nanoshells. , 2018, , .		0
420	Biomimetic materials for injectable tissue engineering: studies of acute, lasting and unexpected angiogenesis response. FASEB Journal, 2006, 20, A20.	0.5	0
421	Zellen. , 2009, , 129-153.		0
422	Surface Immobilization of Adhesion Ligands for Inv The Electrical Engineering Handbook, 1999, , .	0.2	0