
Martina Absinta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7312794/publications.pdf Version: 2024-02-01

MADTINA ARSINTA

#	Article	IF	CITATIONS
1	Leptomeningeal enhancement in multiple sclerosis and other neurological diseases: A systematic review and Meta-Analysis. NeuroImage: Clinical, 2022, 33, 102939.	2.7	24
2	A New Advanced <scp>MRI</scp> Biomarker for Remyelinated Lesions in Multiple Sclerosis. Annals of Neurology, 2022, 92, 486-502.	5.3	28
3	Lesion size and shape in central vein sign assessment for multiple sclerosis diagnosis: An in vivo and postmortem MRI study. Multiple Sclerosis Journal, 2022, 28, 1891-1902.	3.0	2
4	Imaging meningeal inflammation in CNS autoimmunity identifies a therapeutic role for BTK inhibition. Brain, 2021, 144, 1396-1408.	7.6	44
5	Cognitive impairment, the central vein sign, and paramagnetic rim lesions in RIS. Multiple Sclerosis Journal, 2021, 27, 2199-2208.	3.0	25
6	Chronic White Matter Inflammation and Serum Neurofilament Levels in Multiple Sclerosis. Neurology, 2021, 97, e543-e553.	1.1	54
7	Fully automated detection of paramagnetic rims in multiple sclerosis lesions on 3T susceptibility-based MR imaging. NeuroImage: Clinical, 2021, 32, 102796.	2.7	10
8	Slowly expanding lesions are a marker of progressive MS – Yes. Multiple Sclerosis Journal, 2021, 27, 1679-1681.	3.0	10
9	<scp>7T MRI</scp> Differentiates Remyelinated from Demyelinated Multiple Sclerosis Lesions. Annals of Neurology, 2021, 90, 612-626.	5.3	37
10	A lymphocyte–microglia–astrocyte axis in chronic active multiple sclerosis. Nature, 2021, 597, 709-714.	27.8	307
11	The "central vein sign―in patients with diagnostic "red flags―for multiple sclerosis: A prospective multicenter 3T study. Multiple Sclerosis Journal, 2020, 26, 421-432.	3.0	44
12	RimNet: A deep 3D multimodal MRI architecture for paramagnetic rim lesion assessment in multiple sclerosis. NeuroImage: Clinical, 2020, 28, 102412.	2.7	21
13	Magnetic resonance imaging in multiple sclerosis animal models: A systematic review, meta-analysis, and white paper. NeuroImage: Clinical, 2020, 28, 102371.	2.7	6
14	Paramagnetic Rim Lesions are Specific to Multiple Sclerosis: An International Multicenter 3T MRI Study. Annals of Neurology, 2020, 88, 1034-1042.	5.3	89
15	Mechanisms underlying progression in multiple sclerosis. Current Opinion in Neurology, 2020, 33, 277-285.	3.6	88
16	Paramagnetic Rim Sign in Radiologically Isolated Syndrome. JAMA Neurology, 2020, 77, 653.	9.0	40
17	CVSnet: A machine learning approach for automated central vein sign assessment in multiple sclerosis. NMR in Biomedicine, 2020, 33, e4283.	2.8	31
18	Controversial association between leptomeningeal enhancement and demyelinated cortical lesions in multiple sclerosis. Multiple Sclerosis Journal, 2020, 26, 135-136.	3.0	11

#	Article	IF	CITATIONS
19	Association of Chronic Active Multiple Sclerosis Lesions With Disability In Vivo. JAMA Neurology, 2019, 76, 1474.	9.0	288
20	The "central vein sign―in inflammatory demyelination: The role of fibrillar collagen type I. Annals of Neurology, 2019, 85, 934-942.	5.3	20
21	Imaging outcome measures of neuroprotection and repair in MS. Neurology, 2019, 92, 519-533.	1.1	53
22	lmaging of meningeal inflammation should become part of the routine MRI protocol – Yes. Multiple Sclerosis Journal, 2019, 25, 330-331.	3.0	4
23	Potential role of iron in repair of inflammatory demyelinating lesions. Journal of Clinical Investigation, 2019, 129, 4365-4376.	8.2	45
24	Spatiotemporal distribution of fibrinogen in marmoset and human inflammatory demyelination. Brain, 2018, 141, 1637-1649.	7.6	49
25	Central vein sign differentiates Multiple Sclerosis from central nervous system inflammatory vasculopathies. Annals of Neurology, 2018, 83, 283-294.	5.3	160
26	Leptomeningeal enhancement of the spinal cord in sarcoidosis. Multiple Sclerosis Journal, 2018, 24, 1916-1917.	3.0	1
27	Diagnostic performance of central vein sign for multiple sclerosis with a simplified three-lesion algorithm. Multiple Sclerosis Journal, 2018, 24, 750-757.	3.0	50
28	Identification of Chronic Active Multiple Sclerosis Lesions on 3T MRI. American Journal of Neuroradiology, 2018, 39, 1233-1238.	2.4	83
29	Magnetic Resonance Imaging and Histopathological Visualization of Human Dural Lymphatic Vessels. Bio-protocol, 2018, 8, .	0.4	12
30	Slowly eroding lesions in multiple sclerosis. Multiple Sclerosis Journal, 2017, 23, 464-472.	3.0	28
31	Leptomeningeal gadolinium enhancement across the spectrum of chronic neuroinflammatory diseases. Neurology, 2017, 88, 1439-1444.	1.1	85
32	Fibrinogen Activates BMP Signaling in Oligodendrocyte Progenitor Cells and Inhibits Remyelination after Vascular Damage. Neuron, 2017, 96, 1003-1012.e7.	8.1	131
33	Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. ELife, 2017, 6, .	6.0	403
34	Advanced MRI and staging of multiple sclerosis lesions. Nature Reviews Neurology, 2016, 12, 358-368.	10.1	124
35	Utilizing 3D Printing Technology to Merge MRI with Histology: A Protocol for Brain Sectioning. Journal of Visualized Experiments, 2016, , .	0.3	23
36	Clinical 3-tesla FLAIR* MRI improves diagnostic accuracy in multiple sclerosis. Multiple Sclerosis Journal, 2016, 22, 1578-1586.	3.0	27

#	Article	IF	CITATIONS
37	Spring cleaning: time to rethink imaging research lines in MS?. Journal of Neurology, 2016, 263, 1893-1902.	3.6	7
38	Persistent 7-tesla phase rim predicts poor outcome in new multiple sclerosis patient lesions. Journal of Clinical Investigation, 2016, 126, 2597-2609.	8.2	212
39	Gadolinium-based MRI characterization of leptomeningeal inflammation in multiple sclerosis. Neurology, 2015, 85, 18-28.	1.1	247
40	Direct MRI detection of impending plaque development in multiple sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e145.	6.0	28
41	Intranetwork and internetwork functional connectivity abnormalities in pediatric multiple sclerosis. Human Brain Mapping, 2014, 35, 4180-4192.	3.6	40
42	Postmortem Magnetic Resonance Imaging to Guide the Pathologic Cut. Journal of Neuropathology and Experimental Neurology, 2014, 73, 780-788.	1.7	55
43	Posterior brain damage and cognitive impairment in pediatric multiple sclerosis. Neurology, 2014, 82, 1314-1321.	1.1	56
44	Insights from magnetic resonance imaging. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2014, 122, 115-149.	1.8	19
45	MRI Predicts Efficacy of Constraint-Induced Movement Therapy in Children With Brain Injury. Neurotherapeutics, 2013, 10, 511-519.	4.4	23
46	Future MRI tools in multiple sclerosis. Journal of the Neurological Sciences, 2013, 331, 14-18.	0.6	25
47	Sevenâ€ŧesla phase imaging of acute multiple sclerosis lesions: A new window into the inflammatory process. Annals of Neurology, 2013, 74, 669-678.	5.3	135
48	Location of brain lesions predicts conversion of clinically isolated syndromes to multiple sclerosis. Neurology, 2013, 80, 234-241.	1.1	53
49	Optimized T1-MPRAGE Sequence for Better Visualization of Spinal Cord Multiple Sclerosis Lesions at 3T. American Journal of Neuroradiology, 2013, 34, 2215-2222.	2.4	51
50	Regional Cervical Cord Atrophy and Disability in Multiple Sclerosis: A Voxel-based Analysis. Radiology, 2013, 266, 853-861.	7.3	42
51	Selective decreased grey matter volume of the pain-matrix network in cluster headache. Cephalalgia, 2012, 32, 109-115.	3.9	101
52	Abnormal cervical cord function contributes to fatigue in multiple sclerosis. Multiple Sclerosis Journal, 2012, 18, 1552-1559.	3.0	33
53	Patients with migraine do not have MRI-visible cortical lesions. Journal of Neurology, 2012, 259, 2695-2698.	3.6	54
54	Spatial Normalization and Regional Assessment of Cord Atrophy: Voxel-Based Analysis of Cervical Cord 3D T1-Weighted Images. American Journal of Neuroradiology, 2012, 33, 2195-2200.	2.4	37

#	Article	IF	CITATIONS
55	Cervical cord FMRI abnormalities differ between the progressive forms of multiple sclerosis. Human Brain Mapping, 2012, 33, 2072-2080.	3.6	27
56	The role of advanced magnetic resonance imaging techniques in primary progressive MS. Journal of Neurology, 2012, 259, 611-621.	3.6	27
57	Cortical lesions in children with multiple sclerosis. Neurology, 2011, 76, 910-913.	1.1	47
58	Tract-specific white matter structural disruption in patients with bipolar disorder. Bipolar Disorders, 2011, 13, 414-424.	1.9	122
59	A multicentre study of motor functional connectivity changes in patients with multiple sclerosis. European Journal of Neuroscience, 2011, 33, 1256-1263.	2.6	25
60	Overcoming the Clinical–MR Imaging Paradox of Multiple Sclerosis: MR Imaging Data Assessed with a Random Forest Approach. American Journal of Neuroradiology, 2011, 32, 2098-2102.	2.4	17
61	Intrinsic Damage to the Major White Matter Tracts in Patients with Different Clinical Phenotypes of Multiple Sclerosis: A Voxelwise Diffusion-Tensor MR Study. Radiology, 2011, 260, 541-550.	7.3	65
62	Dentate Nucleus T1 Hyperintensity in Multiple Sclerosis: Fig 1 American Journal of Neuroradiology, 2011, 32, E120-E121.	2.4	9
63	Sensorimotor Functional Connectivity Changes in Amyotrophic Lateral Sclerosis. Cerebral Cortex, 2011, 21, 2291-2298.	2.9	102
64	Sensorimotor network rewiring in mild cognitive impairment and Alzheimer's disease. Human Brain Mapping, 2010, 31, 515-525.	3.6	93
65	Assessment of white matter tract damage in mild cognitive impairment and Alzheimer's disease. Human Brain Mapping, 2010, 31, 1862-1875.	3.6	119
66	Default-mode network dysfunction and cognitive impairment in progressive MS. Neurology, 2010, 74, 1252-1259.	1.1	292
67	Cervical cord functional MRI changes in relapse-onset MS patients. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, 405-408.	1.9	35
68	Central nervous system dysregulation extends beyond the pain-matrix network in cluster headache. Cephalalgia, 2010, 30, 1383-1391.	3.9	55
69	Brain macro- and microscopic damage in patients with paediatric MS. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, 1357-1362.	1.9	23
70	Functional and Structural Connectivity of the Motor Network in Pediatric and Adult-Onset Relapsing-Remitting Multiple Sclerosis. Radiology, 2010, 254, 541-550.	7.3	72
71	Rapid semi-automatic segmentation of the spinal cord from magnetic resonance images: Application in multiple sclerosis. NeuroImage, 2010, 50, 446-455.	4.2	234
72	Primary Progressive Multiple Sclerosis: Tactile-associated Functional MR Activity in the Cervical Spinal Cord. Radiology, 2009, 253, 209-215.	7.3	29

#	Article	IF	CITATIONS
73	Structural and functional MRI correlates of Stroop control in benign MS. Human Brain Mapping, 2009, 30, 276-290.	3.6	117
74	Abnormal connectivity of the sensorimotor network in patients with MS: A multicenter fMRI study. Human Brain Mapping, 2009, 30, 2412-2425.	3.6	51
75	Is a preserved functional reserve a mechanism limiting clinical impairment in pediatric MS patients?. Human Brain Mapping, 2009, 30, 2844-2851.	3.6	64
76	Evidence of thalamic gray matter loss in pediatric multiple sclerosis. Neurology, 2008, 70, 1107-1112.	1.1	258
77	In vivo assessment of cervical cord damage in MS patients: a longitudinal diffusion tensor MRI study. Brain, 2007, 130, 2211-2219.	7.6	141
78	Altered functional and structural connectivities in patients with MS. Neurology, 2007, 69, 2136-2145.	1.1	116