Francesco Cugini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7312234/publications.pdf

Version: 2024-02-01

759233 642732 37 571 12 23 citations h-index g-index papers 38 38 38 693 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Structure and magnetic properties of Fe-Co alloy nanoparticles synthesized by pulsed-laser inert gas condensation. Journal of Alloys and Compounds, 2022, 890, 161863.	5.5	10
2	Magnetocaloric properties at the austenitic Curie transition in Cu and Fe substituted Ni-Mn-In Heusler compounds. Journal of Alloys and Compounds, 2022, 899, 163249.	5.5	11
3	Mechanosynthesis of multiferroic hybrid organic-inorganic [NH4][M(HCOO)3] MÂ=ÂCo2+,Mn2+,Zn2+,Ni2+, Cu2+ formate-based frameworks. Journal of Alloys and Compounds, 2022, 899, 163288.	5.5	2
4	Effect of size and disorder on martensitic phase transition and thermal hysteresis in milled Ni-Mn-In-Co microparticles. Journal of Alloys and Compounds, 2022, 906, 164377.	5.5	3
5	Effective decoupling of ferromagnetic sublattices by frustration in Heusler alloys. Physical Review B, 2022, 105, .	3.2	9
6	Waste of batteries management: Synthesis of magnetocaloric manganite compound from the REEs mixture generated during hydrometallurgical processing of NiMH batteries. Sustainable Materials and Technologies, 2021, 28, e00267.	3.3	0
7	Multifunctional Ni-Mn-Ga and Ni-Mn-Cu-Ga Heusler particles towards the nanoscale by ball-milling technique. Journal of Alloys and Compounds, 2021, 872, 159747.	5 . 5	9
8	High-temperature magnetic coercivity of CNTs filled with multi-phase Fe-based nanoparticles. Journal of Magnetism and Magnetic Materials, 2020, 496, 165917.	2.3	3
9	Rapid microwave synthesis of magnetocaloric Ni–Mn–Sn Heusler compounds. Scripta Materialia, 2020, 176, 63-66.	5.2	13
10	Slow Magnetic Relaxation of a 12-Metallacrown-4 Complex with a Manganese(III)–Copper(II) Heterometallic Ring Motif. Inorganic Chemistry, 2020, 59, 11894-11900.	4.0	4
11	Understanding magnetic relaxation in single-ion magnets with high blocking temperature. Physical Review B, 2020, 101, .	3.2	94
12	On the direct measurement of the adiabatic temperature change of magnetocaloric materials. Journal of Applied Physics, 2020, 127, .	2.5	18
13	Direct measurements of the magnetocaloric effect of Fe49Rh51 using the mirage effect. Journal of Applied Physics, 2020, 127, .	2.5	9
14	Scale-Up of Magnetocaloric NiCoMnIn Heuslers by Powder Metallurgy for Room Temperature Magnetic Refrigeration. Frontiers in Energy Research, 2020, 7, .	2.3	11
15	First Experimental Evidences of the Ferroelectric Nature of Struvite. Crystal Growth and Design, 2020, 20, 4454-4460.	3.0	7
16	Lattice strain accommodation and absence of pre-transition phases in Ni ₅₀ Mn _{25+x} In _{25â°'x} . Journal of Physics Condensed Matter, 2020, 32, 505801.	1.8	6
17	ubiquitous first-order transitions and site-selective vanishing of the magnetic moment in giant magnetocaloric MnFeSiP alloys detected by <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mmultiscripts><mml:mi>Mn</mml:mi><mml:mpresc></mml:mpresc><mml:none></mml:none><mml:mn>55</mml:mn></mml:mmultiscripts></mml:math> NMR. Physical Review B, 2019,	r a p z s	3
18	Tuning the magnetic and magnetocaloric properties of austenitic Ni-Mn-(In,Sn) Heuslers. Scripta Materialia, 2019, 170, 48-51.	5.2	19

#	Article	IF	CITATIONS
19	On the versatility and distinctiveness in the use of microwave energy for the ignition of low exothermic Ni–Ti intermetallics combustion synthesis. Materials Chemistry and Physics, 2019, 233, 220-229.	4.0	5
20	Interfacial Thermal Resistance in Magnetocaloric Epoxyâ€Bonded Laâ€Feâ€Coâ€Si Composites. Energy Technology, 2018, 6, 1448-1452.	3.8	11
21	Giant magneto–electric coupling in 100 nm thick Co capped by ZnO nanorods. Nanoscale, 2018, 10, 1326-1336.	5.6	11
22	Cold working consequence on the magnetocaloric effect of Ni50Mn34In16 Heusler alloy. Journal of Alloys and Compounds, 2018, 749, 211-216.	5 . 5	18
23	Direct measurement of the magnetocaloric effect on micrometric Ni-Mn-(In,Sn) ribbons by the mirage effect under pulsed magnetic field. Applied Physics Letters, 2018, 113, .	3.3	10
24	Adiabatic temperature change, magnetic entropy change and critical behavior near the ferromagnetic–paramagnetic phase transition in La0.7(Ca,Sr)0.3MnO3 perovskite. Phase Transitions, 2018, 91, 691-702.	1.3	9
25	On the Broadening of the Martensitic Transition in Heusler Alloys: From Microscopic Features to Magnetocaloric Properties. Jom, 2017, 69, 1422-1426.	1.9	8
26	Investigation of the magnetic, electronic and magnetocaloric properties of La 0.7 (Ca,Sr) 0.3 Mn $1-x$ Gd x O 3 manganites. Journal of Magnetism and Magnetic Materials, 2017, 441, 776-786.	2.3	4
27	Dynamics of nonergodic ferromagnetic/antiferromagnetic ordering and magnetocalorics in antiperovskite <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>Mn</mml:mi><td>:mrow><n< td=""><td>nml:mn>3</td></n<></td></mml:mrow></mml:msub></mml:math>	:mrow> <n< td=""><td>nml:mn>3</td></n<>	nml:mn>3
28	Preliminary Investigation on a Rotary Magnetocaloric Refrigerator Prototype. Energy Procedia, 2017, 142, 1288-1293.	1.8	8
29	Influence of the transition width on the magnetocaloric effect across the magnetostructural transition of Heusler alloys. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150306.	3.4	22
30	Millisecond direct measurement of the magnetocaloric effect of a Fe2P-based compound by the mirage effect. Applied Physics Letters, 2016, 108 , .	3.3	23
31	Strong magneto-volume effects and hysteresis reduction in the In-doped (NiCo)2MnGa Heusler alloys. Journal of Alloys and Compounds, 2016, 685, 142-146.	5.5	3
32	Influence of thermal conductivity on the dynamic response of magnetocaloric materials. International Journal of Refrigeration, 2015, 59, 29-36.	3.4	22
33	Co and In Doped Ni-Mn-Ga Magnetic Shape Memory Alloys: A Thorough Structural, Magnetic and Magnetocaloric Study. Entropy, 2014, 16, 2204-2222.	2.2	46
34	Non-contact direct measurement of the magnetocaloric effect in thin samples. Review of Scientific Instruments, 2014, 85, 074902.	1.3	16
35	Direct magnetocaloric characterization and simulation of thermomagnetic cycles. Review of Scientific Instruments, 2013, 84, 073907.	1.3	38
36	Convergence of direct and indirect methods in the magnetocaloric study of first order transformations: The case of Ni-Co-Mn-Ga Heusler alloys. Physical Review B, 2012, 86, .	3.2	63

#	Article	IF	CITATIONS
37	Magnetic phase diagram of the austenitic Mn-rich Ni-Mn-(In,Sn) Heusler alloys. Electronic Structure, 0, , .	2.8	1