Run Hu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7312153/run-hu-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 156
 6,326
 42
 76

 papers
 citations
 h-index
 g-index

 178
 8,201
 9.6
 6.53

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
156	Near-field thermophotonic system for power generation and electroluminescent refrigeration. <i>Applied Physics Letters</i> , 2022 , 120, 053902	3.4	3
155	Temporally-adjustable radiative thermal diode based on metal-insulator phase change. <i>International Journal of Heat and Mass Transfer</i> , 2022 , 185, 122443	4.9	2
154	Passive ultra-conductive thermal metamaterials Advanced Materials, 2022, e2200329	24	2
153	Self-switchable radiative cooling. <i>Matter</i> , 2022 , 5, 780-782	12.7	
152	Real-time Self-adaptive Thermal Metasurface Advanced Materials, 2022, e2201093	24	2
151	High-thermopower polarized electrolytes enabled by methylcellulose for low-grade heat harvesting <i>Science Advances</i> , 2022 , 8, eabl5318	14.3	4
150	Robustly printable freeform thermal metamaterials. <i>Nature Communications</i> , 2021 , 12, 7228	17.4	8
149	Transforming heat transfer with thermal metamaterials and devices. <i>Nature Reviews Materials</i> , 2021 , 6, 488-507	73.3	68
148	Spin-Encoded Wavelength-Direction Multitasking Janus Metasurfaces. <i>Advanced Optical Materials</i> , 2021 , 9, 2100190	8.1	28
147	Big-data-accelerated aperiodic Si/Ge superlattice prediction for quenching thermal conduction via pattern analysis. <i>Energy and AI</i> , 2021 , 3, 100046	12.6	8
146	Many-body near-field radiative heat transfer: methods, functionalities and applications. <i>Reports on Progress in Physics</i> , 2021 ,	14.4	16
145	Twistronics for photons: opinion. <i>Optical Materials Express</i> , 2021 , 11, 1377	2.6	14
144	Thermal camouflaging metamaterials. <i>Materials Today</i> , 2021 , 45, 120-141	21.8	48
143	Tailoring Light with Layered and Moir[Metasurfaces. <i>Trends in Chemistry</i> , 2021 , 3, 342-358	14.8	29
142	Quo Vadis, Metasurfaces?. <i>Nano Letters</i> , 2021 , 21, 5461-5474	11.5	34
141	Cooling of high-power LEDs by liquid sprays: Challenges and prospects. <i>Applied Thermal Engineering</i> , 2021 , 184, 115640	5.8	18
140	Thermally-enhanced nanoencapsulated phase change materials for latent functionally thermal fluid. <i>International Journal of Thermal Sciences</i> , 2021 , 159, 106619	4.1	7

139	Water droplet bouncing dynamics. <i>Nano Energy</i> , 2021 , 81, 105647	17.1	21
138	Path-Dependent Thermal Metadevice beyond Janus Functionalities. <i>Advanced Materials</i> , 2021 , 33, e200	03:084	6
137	Adaptive Radiative Thermal Camouflage via Synchronous Heat Conduction. <i>Chinese Physics Letters</i> , 2021 , 38, 010502	1.8	5
136	Diffusive nonreciprocity and thermal diode. <i>Physical Review B</i> , 2021 , 103,	3.3	12
135	Thermal Nanostructure Design by Materials Informatics. Springer Series in Materials Science, 2021, 153-	19359	
134	High-throughput screening of a high-Q mid-infrared Tamm emitter by material informatics. <i>Optics Letters</i> , 2021 , 46, 888-891	3	12
133	Design of ultrathin thermal meta-substrate for uniform cooling. <i>Europhysics Letters</i> , 2021 , 135, 26003	1.6	1
132	Manipulating heat transport of photoluminescent composites in LEDs/LDs. <i>Journal of Applied Physics</i> , 2021 , 130, 070906	2.5	3
131	Inverse design of rotating metadevice for adaptive thermal cloaking. <i>International Journal of Heat and Mass Transfer</i> , 2021 , 176, 121417	4.9	8
130	Colored radiative cooling: How to balance color display and radiative cooling performance. <i>International Journal of Thermal Sciences</i> , 2021 , 170, 107172	4.1	10
129	Liquid Thermocells Enable Low-Grade Heat Harvesting. <i>Matter</i> , 2020 , 3, 1400-1402	12.7	14
128	3D-Printed Curved Metasurface with Multifunctional Wavefronts. <i>Advanced Optical Materials</i> , 2020 , 8, 2000129	8.1	11
127	Artificial Metaphotonics Born Naturally in Two Dimensions. <i>Chemical Reviews</i> , 2020 , 120, 6197-6246	68.1	42
126	Machine-Learning-Optimized Aperiodic Superlattice Minimizes Coherent Phonon Heat Conduction. <i>Physical Review X</i> , 2020 , 10,	9.1	29
125	Emerging Materials and Strategies for Personal Thermal Management. <i>Advanced Energy Materials</i> , 2020 , 10, 1903921	21.8	115
124	Dynamic thermal camouflage via a liquid-crystal-based radiative metasurface. <i>Nanophotonics</i> , 2020 , 9, 855-863	6.3	38
123	Flexible and Robust Biomaterial Microstructured Colored Textiles for Personal Thermoregulation. <i>ACS Applied Materials & District Mater</i>	9.5	49
122	Soft bimorph actuator with real-time multiplex motion perception. <i>Nano Energy</i> , 2020 , 76, 104926	17.1	52

121	Thermal routing via near-field radiative heat transfer. <i>International Journal of Heat and Mass Transfer</i> , 2020 , 150, 119346	4.9	21
120	Machine learning-optimized Tamm emitter for high-performance thermophotovoltaic system with detailed balance analysis. <i>Nano Energy</i> , 2020 , 72, 104687	17.1	29
119	Moir[Hyperbolic Metasurfaces. Nano Letters, 2020, 20, 3217-3224	11.5	75
118	Radiative metasurface for thermal camouflage, illusion and messaging. <i>Optics Express</i> , 2020 , 28, 875-885	53.3	40
117	Effective medium theory for thermal scattering off rotating structures. <i>Optics Express</i> , 2020 , 28, 25894-2	25907	17
116	Metamaterials-Enabled Sensing for Human-Machine Interfacing. Sensors, 2020, 21,	3.8	2
115	Electron mobility and mode analysis of scattering for EGaO from first principles. <i>Journal of Physics Condensed Matter</i> , 2020 , 32, 465704	1.8	3
114	Directional Janus Metasurface. <i>Advanced Materials</i> , 2020 , 32, e1906352	24	111
113	Thermally drawn advanced functional fibers: New frontier of flexible electronics. <i>Materials Today</i> , 2020 , 35, 168-194	21.8	74
112	Quenching Thermal Transport in Aperiodic Superlattices: A Molecular Dynamics and Machine Learning Study. <i>ACS Applied Materials & Description</i> (12, 8795-8804)	9.5	23
111	Tunable analog thermal material. <i>Nature Communications</i> , 2020 , 11, 6028	17.4	22
110	High thermoelectric figure of merit in monolayer Tl2O from first principles. <i>Journal of Applied Physics</i> , 2020 , 128, 185111	2.5	1
109	Banyan-inspired hierarchical evaporators for efficient solar photothermal conversion. <i>Applied Energy</i> , 2020 , 276, 115545	10.7	32
108	Illusion thermotics with topology optimization. <i>Journal of Applied Physics</i> , 2020 , 128, 045106	2.5	13
107	Examining two-dimensional Frfilich model and enhancing the electron mobility of monolayer InSe by dielectric engineering. <i>Journal of Applied Physics</i> , 2020 , 128, 035107	2.5	5
106	Experimental Investigation on the Moisture Stability of QDs-LEDs With Layered Packaging Structure. <i>IEEE Photonics Technology Letters</i> , 2020 , 32, 1423-1426	2.2	
105	Electromagnetic chirality: from fundamentals to nontraditional chiroptical phenomena. <i>Light: Science and Applications</i> , 2020 , 9, 139	16.7	85
104	A Continuously Tunable Solid-Like Convective Thermal Metadevice on the Reciprocal Line. Advanced Materials, 2020 , 32, e2003823	24	18

(2018-2020)

103	Polarization-Controlled Dual-Programmable Metasurfaces. <i>Advanced Science</i> , 2020 , 7, 1903382	13.6	50
102	3D Printed Meta-Helmet for Wide-Angle Thermal Camouflages. <i>Advanced Functional Materials</i> , 2020 , 30, 2002061	15.6	19
101	Nanoscale thermal cloaking by in-situ annealing silicon membrane. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2019 , 383, 2296-2301	2.3	15
100	Spectrum Manipulation for Sound with Effective Gauge Fields in Cascading Temporally Modulated Waveguides. <i>Physical Review Applied</i> , 2019 , 11,	4.3	3
99	Encrypted Thermal Printing with Regionalization Transformation. Advanced Materials, 2019, 31, e18078	3494	70
98	Ion Write Microthermotics: Programing Thermal Metamaterials at the Microscale. <i>Nano Letters</i> , 2019 , 19, 3830-3837	11.5	24
97	Bio-Inspired Flexible Fluoropolymer Film for All-Mode Light Extraction Enhancement. <i>ACS Applied Materials & Acs Applied & Acs A</i>	9.5	7
96	Explosive bouncing on heated silicon surfaces under low ambient pressure. Soft Matter, 2019, 15, 4320	-43225	10
95	Doublet Thermal Metadevice. Physical Review Applied, 2019, 11,	4.3	40
94	Analysis of elliptical thermal cloak based on entropy generation and entransy dissipation approach. <i>Chinese Physics B</i> , 2019 , 28, 087804	1.2	5
93	Two-dimensional phonon engineering triggers microscale thermal functionalities. <i>National Science Review</i> , 2019 , 6, 1071-1073	10.8	16
92	An immersed jet array impingement cooling device with distributed returns for direct body liquid cooling of high power electronics. <i>Applied Thermal Engineering</i> , 2019 , 162, 114259	5.8	24
91	Anti-parity-time symmetry in diffusive systems. Science, 2019 , 364, 170-173	33.3	116
90	Three-Dimensional Illusion Thermotics with Separated Thermal Illusions. <i>ES Energy & Environments</i> , 2019 ,	2.9	4
89	Twisted Surface Plasmons with Spin-Controlled Gold Surfaces. Advanced Optical Materials, 2019, 7, 180	1 96 0	25
88	While rotating while cloaking. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2019 , 383, 759-763	2.3	32
87	Giant intrinsic chiro-optical activity in planar dielectric nanostructures. <i>Light: Science and Applications</i> , 2018 , 7, 17158	16.7	141
86	Illusion Thermotics. <i>Advanced Materials</i> , 2018 , 30, e1707237	24	155

85	Twisted Acoustics: Metasurface-Enabled Multiplexing and Demultiplexing. <i>Advanced Materials</i> , 2018 , 30, e1800257	24	84
84	Structured thermal surface for radiative camouflage. <i>Nature Communications</i> , 2018 , 9, 273	17.4	134
83	Modularized thermal storage unit of metal foam/paraffin composite. <i>International Journal of Heat and Mass Transfer</i> , 2018 , 125, 596-603	4.9	34
82	Wavenumber-Splitting Metasurfaces Achieve Multichannel Diffusive Invisibility. <i>Advanced Optical Materials</i> , 2018 , 6, 1800010	8.1	55
81	An optical-thermal model for laser-excited remote phosphor with thermal quenching. <i>International Journal of Heat and Mass Transfer</i> , 2018 , 116, 694-702	4.9	77
80	Phosphor modeling based on fluorescent radiative transfer equation. <i>Optics Express</i> , 2018 , 26, 16442-1	6 4.5 5	7
79	White-Light-Emitting Diodes: Targeting Cooling for Quantum Dots in White QDs-LEDs by Hexagonal Boron Nitride Platelets with Electrostatic Bonding (Adv. Funct. Mater. 30/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870212	15.6	1
78	3D Metaphotonic Nanostructures with Intrinsic Chirality. <i>Advanced Functional Materials</i> , 2018 , 28, 1803	1<u>4</u>₹ .6	73
77	Thermal illusion with twinborn-like heat signatures. <i>International Journal of Heat and Mass Transfer</i> , 2018 , 127, 607-613	4.9	70
76	Targeting Cooling for Quantum Dots in White QDs-LEDs by Hexagonal Boron Nitride Platelets with Electrostatic Bonding. <i>Advanced Functional Materials</i> , 2018 , 28, 1801407	15.6	68
75	Detecting thermal metamaterial structures by flying laser point. <i>Journal of Physics: Conference Series</i> , 2018 , 1077, 012001	0.3	
74	Binary Thermal Encoding by Energy Shielding and Harvesting Units. <i>Physical Review Applied</i> , 2018 , 10,	4.3	38
73	Chirality-Assisted High-Efficiency Metasurfaces with Independent Control of Phase, Amplitude, and Polarization. <i>Advanced Optical Materials</i> , 2018 , 7, 1801479	8.1	87
72	Full-Parameter Omnidirectional Thermal Metadevices of Anisotropic Geometry. <i>Advanced Materials</i> , 2018 , 30, e1804019	24	61
71	Non-monotonously tuning thermal conductivity of graphite-nanosheets/paraffin composite by ultrasonic exfoliation. <i>International Journal of Thermal Sciences</i> , 2018 , 131, 20-26	4.1	8
70	Phosphor Temperature Overestimation in High-Power Light-Emitting Diode by Thermocouple. <i>IEEE Transactions on Electron Devices</i> , 2017 , 64, 463-466	2.9	10
69	Energy-Saving Light Source Spectrum Optimization by Considering Object@ Reflectance. <i>IEEE Photonics Journal</i> , 2017 , 9, 1-11	1.8	6
68	A statistical study to identify the effects of packaging structures on lumen reliability of LEDs. <i>Microelectronics Reliability</i> , 2017 , 71, 51-55	1.2	2

(2016-2017)

67	Passive thermal management system for downhole electronics in harsh thermal environments. <i>Applied Thermal Engineering</i> , 2017 , 118, 593-599	5.8	52
66	Realization of wide circadian variability by quantum dots-luminescent mesoporous silica-based white light-emitting diodes. <i>Nanotechnology</i> , 2017 , 28, 425204	3.4	17
65	Dynamic Phosphor Sedimentation Effect on the Optical Performance of White LEDs. <i>IEEE Photonics Technology Letters</i> , 2017 , 29, 1195-1198	2.2	17
64	A modified bidirectional thermal resistance model for junction and phosphor temperature estimation in phosphor-converted light-emitting diodes. <i>International Journal of Heat and Mass Transfer</i> , 2017 , 106, 1-6	4.9	51
63	A comparative study of phosphor scattering model for phosphor-converted light-emitting diodes 2017 ,		1
62	Effect of the substrate temperature on the phosphor sedimentation of phosphor-converted LEDs 2017 ,		3
61	Thermal management of downhole electronics cooling in oil & gas well logging at high temperature 2016 ,		5
60	Directional heat transport through thermal reflection meta-device. AIP Advances, 2016, 6, 125111	1.5	9
59	Heat and fluid flow in high-power LED packaging and applications. <i>Progress in Energy and Combustion Science</i> , 2016 , 56, 1-32	33.6	284
58	. IEEE Photonics Technology Letters, 2016 , 28, 1589-1592	2.2	11
57	Study on effective thermal conductivity of silicone/phosphor composite and its size effect by Lattice Boltzmann method. <i>Heat and Mass Transfer</i> , 2016 , 52, 2813-2821	2.2	10
56	Effect of Packaging Method on Performance of Light-Emitting Diodes With Quantum Dot Phosphor. <i>IEEE Photonics Technology Letters</i> , 2016 , 28, 1115-1118	2.2	41
55	Hybrid bilayer plasmonic metasurface efficiently manipulates visible light. <i>Science Advances</i> , 2016 , 2, e1501168	14.3	218
54	Experimental Investigation on Composite Phase-Change Material (CPCM)-Based Substrate. <i>Heat Transfer Engineering</i> , 2016 , 37, 351-358	1.7	7
53	Structural optimization for remote white light-emitting diodes with quantum dots and phosphor: packaging sequence matters. <i>Optics Express</i> , 2016 , 24, A1560-A1570	3.3	42
52	Examination of the Thermal Cloaking Effectiveness with Layered Engineering Materials. <i>Chinese Physics Letters</i> , 2016 , 33, 044401	1.8	9
51	Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices. <i>Advanced Materials</i> , 2016 , 28, 2533-9	24	289
50	Exploring the proper experimental conditions in 2D thermal cloaking demonstration. <i>Journal Physics D: Applied Physics</i> , 2016 , 49, 415302	3	11

49	Carpet thermal cloak realization with layered thermal metamaterials: Theory and experiment 2016,		1
48	First-principle-based full-dispersion Monte Carlo simulation of the anisotropic phonon transport in the wurtzite GaN thin film. <i>Journal of Applied Physics</i> , 2016 , 119, 145706	2.5	11
47	Fabrication and Thermal Characterization of the Modularized Thermal Storage Unit. <i>IEEE Transactions on Components, Packaging and Manufacturing Technology</i> , 2016 , 1-10	1.7	
46	Quantum Dots-Converted Light-Emitting Diodes Packaging for Lighting and Display: Status and Perspectives. <i>Journal of Electronic Packaging, Transactions of the ASME</i> , 2016 , 138,	2	122
45	Experimental study of measuring LEDQ temperatures via thermocouple 2016,		1
44	Effect Study of Chip Offset on the Optical Performance of Light-Emitting Diode Packaging. <i>IEEE Photonics Technology Letters</i> , 2015 , 27, 1337-1340	2.2	7
43	Design of a brightness-enhancement-film-adaptive freeform lens to enhance overall performance in direct-lit light-emitting diode backlighting. <i>Applied Optics</i> , 2015 , 54, 5542-8	0.2	13
42	Invisible Sensors: Simultaneous Sensing and Camouflaging in Multiphysical Fields. <i>Advanced Materials</i> , 2015 , 27, 7752-8	24	145
41	Carpet thermal cloak realization based on the refraction law of heat flux. <i>Europhysics Letters</i> , 2015 , 111, 54003	1.6	30
40	Ultrathin pancharatnam-berry metasurface with maximal cross-polarization efficiency. <i>Advanced Materials</i> , 2015 , 27, 1195-200	24	341
39	Local heating realization by reverse thermal cloak. Scientific Reports, 2014, 4, 3600	4.9	69
38	Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials. <i>Advanced Materials</i> , 2014 , 26, 1731-4	24	262
37	Calculation of the phosphor heat generation in phosphor-converted light-emitting diodes. <i>International Journal of Heat and Mass Transfer</i> , 2014 , 75, 213-217	4.9	38
36	Experimental demonstration of a bilayer thermal cloak. <i>Physical Review Letters</i> , 2014 , 112, 054302	7.4	362
35	An engineering method to estimate the junction temperatures of light-emitting diodes in multiple LED application. <i>Journal of the Korean Physical Society</i> , 2014 , 65, 176-184	0.6	4
34	Phosphor distribution optimization to decrease the junction temperature in white pc-LEDs by genetic algorithm. <i>International Journal of Heat and Mass Transfer</i> , 2014 , 77, 891-896	4.9	7
33	Effect of melting temperature and amount of the phase change material (PCM) on thermal performance of hybrid heat sinks 2014 ,		8
32	Manipulating DC currents with bilayer bulk natural materials. <i>Advanced Materials</i> , 2014 , 26, 3478-83	24	53

31	Study on the effect of the phosphor distribution on the phosphor layer temperature in light emitting diodes by lattice Boltzmann method 2014 ,		1	
30	Is thermal management outside the package enough for higher LED reliability? 2014,		2	
29	Theoretical realization of an ultra-efficient thermal-energy harvesting cell made of natural materials. <i>Energy and Environmental Science</i> , 2013 , 6, 3537	35.4	99	
28	Creation of Ghost Illusions Using Wave Dynamics in Metamaterials. <i>Advanced Functional Materials</i> , 2013 , 23, 4028-4034	15.6	89	
27	Comprehensive Study on the Transmitted and Reflected Light Through the Phosphor Layer in Light-Emitting Diode Packages. <i>Journal of Display Technology</i> , 2013 , 9, 447-452		23	
26	Modeling the Light Extraction Efficiency of Bi-Layer Phosphors in White LEDs. <i>IEEE Photonics Technology Letters</i> , 2013 , 25, 1141-1144	2.2	16	
25	Near-/Mid-Field Effect of Color Mixing for Single Phosphor-Converted Light-Emitting Diode Package. <i>IEEE Photonics Technology Letters</i> , 2013 , 25, 246-249	2.2	12	
24	Study on phosphor sedimentation effect in white light-emitting diode packages by modeling multi-layer phosphors with the modified Kubelka-Munk theory. <i>Journal of Applied Physics</i> , 2013 , 113, 063108	2.5	32	
23	Design of double freeform-surface lens for LED uniform illumination with minimum Fresnel losses. <i>Optik</i> , 2013 , 124, 3895-3897	2.5	19	
22	A small flat-plate vapor chamber fabricated by copper powder sintering and diffusion bonding for cooling electronic packages 2013 ,		3	
21	Enhancing Light Output of GaN-Based LEDs With Graded-Thickness Quantum Wells and Barriers. <i>IEEE Photonics Technology Letters</i> , 2013 , 25, 1762-1765	2.2	3	
20	A complementary study to "toward scatter-free phosphors in white phosphor-converted light-emitting diodes:" comment. <i>Optics Express</i> , 2013 , 21, 5071-3	3.3	11	
19	Effects of current crowding on light extraction efficiency of conventional GaN-based light-emitting diodes. <i>Optics Express</i> , 2013 , 21, 25381-8	3.3	24	
18	Homogeneous thermal cloak with constant conductivity and tunable heat localization. <i>Scientific Reports</i> , 2013 , 3, 1593	4.9	161	
17	Design of double freeform-surface lens by distributing the deviation angle for light-emitting diode uniform illumination 2013 ,		1	
16	Effect of phosphor settling on the optical performance of phosphor-converted white light-emitting diode. <i>Journal of Luminescence</i> , 2012 , 132, 1252-1256	3.8	71	
15	A Model for Calculating the Bidirectional Scattering Properties of Phosphor Layer in White Light-Emitting Diodes. <i>Journal of Lightwave Technology</i> , 2012 , 30, 3376-3380	4	27	
14	Optical constants study of YAG:Ce phosphor layer blended with SiO2 particles by Mie theory for white light-emitting diode package. <i>Frontiers of Optoelectronics</i> , 2012 , 5, 138-146	2.8	9	

13	Conformal phosphor coating using capillary microchannel for controlling color deviation of phosphor-converted white light-emitting diodes. <i>Optics Express</i> , 2012 , 20, 5092-8	3.3	50
12	Design of a novel freeform lens for LED uniform illumination and conformal phosphor coating. <i>Optics Express</i> , 2012 , 20, 13727-37	3.3	74
11	A method to design freeform lens for uniform illumination in direct-lit led backlight with high distance-height ratio 2012 ,		4
10	Angular color uniformity improvement for phosphor-converted white light-emitting diodes by optimizing remote coating phosphor geometry 2012 ,		4
9	Hotspot Location Shift in the High-Power Phosphor-Converted White Light-Emitting Diode Packages. <i>Japanese Journal of Applied Physics</i> , 2012 , 51, 09MK05	1.4	23
8	A novel LED un-symmetrical lens for road lighting with super energy saving 2012 ,		2
7	Hotspot Location Shift in the High-Power Phosphor-Converted White Light-Emitting Diode Packages. <i>Japanese Journal of Applied Physics</i> , 2012 , 51, 09MK05	1.4	37
6	Study on the Optical Properties of Conformal Coating Light-Emitting Diode by Monte Carlo Simulation. <i>IEEE Photonics Technology Letters</i> , 2011 , 23, 1673-1675	2.2	63
5	Effect of the amount of phosphor silicone gel on optical property of white light-emitting diodes packaging 2011 ,		3
4	A simple setup to test thermal contact resistance between interfaces of two contacted solid materials 2010 ,		5
3	Distributed external cloak without embedded antiobjects. <i>Optics Letters</i> , 2010 , 35, 2642-4	3	26
2	Low thermal resistance LED light source with vapor chamber coupled fin heat sink 2010,		9
1	Flexible Janus Functional Film for Adaptive Thermal Camouflage. Advanced Materials Technologies, 2100	D & 281	5