

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7311867/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome sequence and genetic diversity of the common carp, Cyprinus carpio. Nature Genetics, 2014, 46, 1212-1219.	21.4	576
2	The allotetraploid origin and asymmetrical genome evolution of theÂcommon carp Cyprinus carpio. Nature Communications, 2019, 10, 4625.	12.8	156
3	Development and evaluation of the first high-throughput SNP array for common carp (Cyprinus) Tj ETQq1 1 0.784	1314 rgBT 2.8	/Overlock
4	An ultra-high density linkage map and QTL mapping for sex and growth-related traits of common carp (Cyprinus carpio). Scientific Reports, 2016, 6, 26693.	3.3	126
5	Characterization of Common Carp Transcriptome: Sequencing, De Novo Assembly, Annotation and Comparative Genomics. PLoS ONE, 2012, 7, e35152.	2.5	121
6	Comparative Transcriptome Analysis Reveals the Genetic Basis of Skin Color Variation in Common Carp. PLoS ONE, 2014, 9, e108200.	2.5	89
7	Genome-Wide SNP Discovery from Transcriptome of Four Common Carp Strains. PLoS ONE, 2012, 7, e48140.	2.5	73
8	Genomic Basis of Adaptive Evolution: The Survival of Amur Ide (<i>Leuciscu</i> s <i>waleckii</i>) in an Extremely Alkaline Environment. Molecular Biology and Evolution, 2017, 34, 145-159.	8.9	66
9	From asymmetrical to balanced genomic diversification during rediploidization: Subgenomic evolution in allotetraploid fish. Science Advances, 2020, 6, eaaz7677.	10.3	59
10	Transcriptome Sequencing and Analysis of Wild Amur Ide (Leuciscus waleckii) Inhabiting an Extreme Alkaline-Saline Lake Reveals Insights into Stress Adaptation. PLoS ONE, 2013, 8, e59703.	2.5	51
11	Draft genome of the Northern snakehead, Channa argus. GigaScience, 2017, 6, 1-5.	6.4	45
12	Identification of Novel Immunogenic Proteins from Mycoplasma bovis and Establishment of an Indirect ELISA Based on Recombinant E1 Beta Subunit of the Pyruvate Dehydrogenase Complex. PLoS ONE, 2014, 9, e88328.	2.5	38
13	Gene expression changes leading extreme alkaline tolerance in Amur ide (Leuciscus waleckii) inhabiting soda lake. BMC Genomics, 2013, 14, 682.	2.8	36
14	Population Genomics Reveals Genetic Divergence and Adaptive Differentiation of Chinese Sea Bass (Lateolabrax maculatus). Marine Biotechnology, 2018, 20, 45-59.	2.4	30
15	Genome Wide Identification, Phylogeny, and Expression of Aquaporin Genes in Common Carp (Cyprinus) Tj ETQq	1	314 rgBT /0
16	Research advances and future perspectives of genomics and genetic improvement in allotetraploid common carp. Reviews in Aquaculture, 2022, 14, 957-978.	9.0	23
17	Phylogeny and Evolution of Multiple Common Carp (Cyprinus carpio L.) Populations Clarified by Phylogenetic Analysis Based on Complete Mitochondrial Genomes. Marine Biotechnology, 2015, 17, 565-575.	2.4	22
18	Genomic, Transcriptomic, and Epigenomic Features Differentiate Genes That Are Relevant for Muscular Polyunsaturated Fatty Acids in the Common Carp. Frontiers in Genetics, 2019, 10, 217.	2.3	20

Jian Xu

#	Article	IF	CITATIONS
19	Complete mitochondrial genome of <i>Leuciscus waleckii</i> (Cypriniformes: Cyprinidae: Leuciscus). Mitochondrial DNA, 2013, 24, 126-128.	0.6	18
20	Adaptive evolution of low-salinity tolerance and hypoosmotic regulation in a euryhaline teleost, Takifugu obscurus. Marine Biology, 2020, 167, 1.	1.5	16
21	Transcriptional differences provide insight into environmental acclimatization in wild amur ide (Leuciscus waleckii) during spawning migration from alkalized lake to freshwater river. Genomics, 2019, 111, 267-276.	2.9	15
22	Transcriptional Profiling Reveals Differential Gene Expression of Amur Ide (Leuciscus waleckii) during Spawning Migration. International Journal of Molecular Sciences, 2015, 16, 13959-13972.	4.1	13
23	Construction of the BAC Library of Small Abalone (Haliotis diversicolor) for Gene Screening and Genome Characterization. Marine Biotechnology, 2016, 18, 49-56.	2.4	13
24	Phylogenetic and Evolutionary Analyses of the Frizzled Gene Family in Common Carp (Cyprinus carpio) Provide Insights into Gene Expansion from Whole-Genome Duplications. PLoS ONE, 2015, 10, e0144037.	2.5	12
25	Comparative transcriptome analysis between aquatic and aerial breathing organs of Channa argus to reveal the genetic basis underlying bimodal respiration. Marine Genomics, 2016, 29, 89-96.	1.1	12
26	Patterns of Geographical and Potential Adaptive Divergence in the Genome of the Common Carp (Cyprinus carpio). Frontiers in Genetics, 2019, 10, 660.	2.3	12
27	A Drive to Driven Model of Mapping Intraspecific Interaction Networks. IScience, 2019, 22, 109-122.	4.1	11
28	Genomics in the common carp. , 2016, , 247-274.		9
29	Development and evaluation of a high-throughput single nucleotide polymorphism multiplex assay for assigning pedigrees in common carp. Aquaculture Research, 2017, 48, 1866-1876.	1.8	9
30	Duplication and differentiation of common carp (Cyprinus carpio) myoglobin genes revealed by BAC analysis. Gene, 2014, 548, 210-216.	2.2	8
31	The complete mitochondrial genome ofCobitis lutheri(Cypriniformes: Cobitidae: Cobitis). Mitochondrial DNA, 2015, 26, 875-876.	0.6	8
32	Complete mitochondrial genome of Northern Sheatfish (<i>Silurus soldatovi</i>). Mitochondrial DNA, 2015, 26, 891-892.	0.6	7
33	Performance of genome prediction for morphological and growth-related traits in Yellow River carp. Aquaculture, 2021, 536, 736463.	3.5	7
34	Population genetic analysis of aquaculture salmonid populations in China using a 57K rainbow trout SNP array. PLoS ONE, 2018, 13, e0202582.	2.5	6
35	Genomic features of common carp that are relevant for resistance against Aeromonas hydrophila infection. Aquaculture, 2022, 547, 737512.	3.5	6
36	Genomic Analysis of Glutathione S-transferases (GST) Family in Common Carp: Identification, Phylogeny and Expression. Pakistan Journal of Zoology, 2017, 49, 1437-1448.	0.2	5

Jian Xu

#	Article	IF	CITATIONS
37	Genome-wide association study and gene editing reveals the causal gene responsible for abnormal red skin color in Yellow River carp. Aquaculture, 2022, 560, 738530.	3.5	5
38	Transcriptomic analysis reveals the genes involved in tetrodotoxin (TTX) accumulation, translocation, and detoxification in the pufferfish Takifugu rubripes. Chemosphere, 2022, , 134962.	8.2	4
39	Transcriptome Analysis Reveals Molecular Underpinnings of Common Carp (Cyprinus carpio) Under Hypoxia Stress. Frontiers in Genetics, 0, 13, .	2.3	4
40	Genome-wide identification of endosialin family of C-type lectins in common carp (Cyprinus carpio) and their response following Aeromonas hydrophila infection. Developmental and Comparative Immunology, 2022, 129, 104338.	2.3	3
41	Complete mitochondrial genome of <i>Sarcocheilichthys lacustris</i> (Cypriniformes, Cyprinidae). Mitochondrial DNA, 2015, 26, 765-766.	0.6	2
42	The complete mitochondrial genome of Russian sturgeon (Acipenser gueldenstaedti). Mitochondrial DNA, 2016, 27, 986-987.	0.6	2
43	Complete mitochondrial genome of yellowfin goby (Acanthogobius hasta). Mitochondrial DNA, 2016, 27, 1231-1232.	0.6	1
44	Genome-wide genetic analysis of cultured rainbow trout (<i>Oncorhynchus mykiss</i>) populations in China. Journal of Fishery Sciences of China, 2018, 25, 485.	0.2	1
45	Diversification of the duplicated Rab1a genes in a hypoxia-tolerant fish, common carp (Cyprinus) Tj ETQq1 1 0.78 54-62.	4314 rgBT 1.6	/Overlock 0
46	The complete mitochondrial genome ofChanna marulius(Perciformes: Channidae: Channa). Mitochondrial DNA, 2016, 27, 1148-1149.	0.6	0