
## Jian Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7311698/publications.pdf Version: 2024-02-01



ΙΙΔΝ ΖΗΔΝΟ

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Tuning Photoexcited Charge Transfer in Imine-Linked Two-Dimensional Covalent Organic Frameworks.<br>Journal of Physical Chemistry Letters, 2022, 13, 1398-1405.                                                                | 2.1 | 16        |
| 2  | Induction of Chirality in Boron Imidazolate Frameworks: The Structure-Directing Effects of Substituents. Inorganic Chemistry, 2022, 61, 6861-6868.                                                                             | 1.9 | 5         |
| 3  | Intermolecular Interaction and Cooperativity in an Fe(II) Spin Crossover Molecular Thin Film System.<br>Journal of Physics Condensed Matter, 2022, 34, .                                                                       | 0.7 | 3         |
| 4  | Impact of π-Conjugation Length on the Excited-State Dynamics of Star-Shaped Carbazole-π-Triazine<br>Organic Chromophores. Journal of Physical Chemistry A, 2022, 126, 3291-3300.                                               | 1.1 | 2         |
| 5  | Covalent Organic Frameworks with Irreversible Linkages via Reductive Cyclization of Imines. Journal of the American Chemical Society, 2022, 144, 9827-9835.                                                                    | 6.6 | 39        |
| 6  | Optimizing Photodetectors in Two-Dimensional Metal-Metalloporphyrinic Framework Thin Films. ACS<br>Applied Materials & Interfaces, 2022, 14, 33548-33554.                                                                      | 4.0 | 13        |
| 7  | Twoâ€Đimensional Covalentâ€Organic Frameworks for Photocatalysis: The Critical Roles of Building<br>Block and Linkage. Solar Rrl, 2021, 5, 2000458.                                                                            | 3.1 | 40        |
| 8  | Conjugation- and Aggregation-Directed Design of Covalent Organic Frameworks as<br>White-Light-Emitting Diodes. Journal of the American Chemical Society, 2021, 143, 1061-1068.                                                 | 6.6 | 75        |
| 9  | Nonvolatile Voltage Controlled Molecular Spin-State Switching for Memory Applications.<br>Magnetochemistry, 2021, 7, 37.                                                                                                       | 1.0 | 29        |
| 10 | Polymerizable metal-organic frameworks for the preparation of mixed matrix membranes with enhanced interfacial compatibility. IScience, 2021, 24, 102560.                                                                      | 1.9 | 7         |
| 11 | Creation and Reconstruction of Thermochromic Au Nanorods with Surface Concavity. Journal of the American Chemical Society, 2021, 143, 15791-15799.                                                                             | 6.6 | 14        |
| 12 | Photoinduced Charge Transport in Conductive Metal Organic Frameworks. , 2021, , .                                                                                                                                              |     | 0         |
| 13 | Chemically Stable Polyarylether-Based Metallophthalocyanine Frameworks with High Carrier<br>Mobilities for Capacitive Energy Storage. Journal of the American Chemical Society, 2021, 143,<br>17701-17707.                     | 6.6 | 42        |
| 14 | Magnetic Field Perturbations to a Soft X-ray-Activated Fe (II) Molecular Spin State Transition.<br>Magnetochemistry, 2021, 7, 135.                                                                                             | 1.0 | 6         |
| 15 | Symmetry-Guided Synthesis of <i>N,N′</i> -Bicarbazole and Porphyrin-Based Mixed-Ligand Metal–Organic<br>Frameworks: Light Harvesting and Energy Transfer. Journal of the American Chemical Society, 2021,<br>143, 20411-20418. | 6.6 | 37        |
| 16 | Manipulation of the molecular spin crossover transition of Fe(H2B(pz)2)2(bipy) by addition of polar<br>molecules. Journal of Physics Condensed Matter, 2020, 32, 034001.                                                       | 0.7 | 4         |
| 17 | Tuning Internal Strain in Metal–Organic Frameworks via Vapor Phase Infiltration for CO <sub>2</sub><br>Reduction. Angewandte Chemie - International Edition, 2020, 59, 4572-4580.                                              | 7.2 | 42        |
| 18 | Unravelling a long-lived ligand-to-metal cluster charge transfer state in Ce–TCPP metal organic<br>frameworks. Chemical Communications, 2020, 56, 13971-13974.                                                                 | 2.2 | 20        |

| #  | Article                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Doubly Interpenetrated Metal–Organic Framework of pcu Topology for Selective Separation of<br>Propylene from Propane. ACS Applied Materials & Interfaces, 2020, 12, 48712-48717.       | 4.0  | 23        |
| 20 | Direct Evidence of Photoinduced Charge Transport Mechanism in 2D Conductive Metal Organic<br>Frameworks. Journal of the American Chemical Society, 2020, 142, 21050-21058.             | 6.6  | 76        |
| 21 | Resistive Switching Memory Performance of Two-Dimensional Polyimide Covalent Organic Framework<br>Films. ACS Applied Materials & Interfaces, 2020, 12, 51837-51845.                    | 4.0  | 57        |
| 22 | Chemically Robust Covalent Organic Frameworks: Progress and Perspective. Matter, 2020, 3, 1507-1540.                                                                                   | 5.0  | 94        |
| 23 | Microporous Hydrogen-Bonded Organic Framework for Highly Efficient Turn-Up Fluorescent Sensing of Aniline. Journal of the American Chemical Society, 2020, 142, 12478-12485.           | 6.6  | 201       |
| 24 | Pyrazine-Fused Porous Graphitic Framework-Based Mixed Matrix Membranes for Enhanced Gas<br>Separations. ACS Applied Materials & Interfaces, 2020, 12, 16922-16929.                     | 4.0  | 19        |
| 25 | Optimization of the Pore Structures of MOFs for Record High Hydrogen Volumetric Working<br>Capacity. Advanced Materials, 2020, 32, e1907995.                                           | 11.1 | 118       |
| 26 | Expeditious synthesis of covalent organic frameworks: a review. Journal of Materials Chemistry A, 2020, 8, 16045-16060.                                                                | 5.2  | 97        |
| 27 | Dynamic Covalent Synthesis of Crystalline Porous Graphitic Frameworks. CheM, 2020, 6, 933-944.                                                                                         | 5.8  | 123       |
| 28 | A novel mesoporous hydrogen-bonded organic framework with high porosity and stability. Chemical<br>Communications, 2020, 56, 66-69.                                                    | 2.2  | 76        |
| 29 | Selective Excited-State Dynamics in a Unique Set of Rationally Designed Ni Porphyrins. Journal of Physical Chemistry C, 2019, 123, 17994-18000.                                        | 1.5  | 8         |
| 30 | Nonvolatile voltage controlled molecular spin state switching. Applied Physics Letters, 2019, 114, .                                                                                   | 1.5  | 50        |
| 31 | Tunable spin-state bistability in a spin crossover molecular complex. Journal of Physics Condensed<br>Matter, 2019, 31, 315401.                                                        | 0.7  | 18        |
| 32 | Enhancing the Bioaccessibility of Phytosterols Using Nanoporous Corn and Wheat Starch<br>Bioaerogels. European Journal of Lipid Science and Technology, 2019, 121, 1700229.            | 1.0  | 26        |
| 33 | Tuning a layer to a three-dimensional cobalt-tris(4′-carboxybiphenyl)amine framework by introducing potassium ions. Inorganic Chemistry Communication, 2018, 90, 65-68.                | 1.8  | 5         |
| 34 | The Electronic Structure Signature of the Spin Cross-Over Transition of [Co(dpzca) <sub>2</sub> ].<br>Zeitschrift Fur Physikalische Chemie, 2018, 232, 445-458.                        | 1.4  | 3         |
| 35 | Electron Transfer and Geometric Conversion of Co–NO Moiety in Saddled Porphyrins: Implications<br>for Trigger Role of Tetrapyrrole Distortion. Inorganic Chemistry, 2018, 57, 277-287. | 1.9  | 12        |
| 36 | Metal-Organic Frameworks for Photocatalysis. Series on Chemistry, Energy and the Environment, 2018, , 519-580.                                                                         | 0.3  | 0         |

| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Use of aligned triphenylamine-based radicals in a porous framework for promoting photocatalysis.<br>Applied Catalysis B: Environmental, 2018, 221, 664-669.                                                                                    | 10.8 | 35        |
| 38 | Geometric deconstruction of core and electron activation of a π-system in a series of deformed porphyrins: mimics of heme. Organic and Biomolecular Chemistry, 2018, 16, 7725-7736.                                                            | 1.5  | 12        |
| 39 | Donor–Acceptor Fluorophores for Energy-Transfer-Mediated Photocatalysis. Journal of the American<br>Chemical Society, 2018, 140, 13719-13725.                                                                                                  | 6.6  | 174       |
| 40 | 2D Covalent Organic Frameworks as Intrinsic Photocatalysts for Visible Light-Driven CO <sub>2</sub><br>Reduction. Journal of the American Chemical Society, 2018, 140, 14614-14618.                                                            | 6.6  | 461       |
| 41 | Topology-Guided Stepwise Insertion of Three Secondary Linkers in Zirconium Metal–Organic<br>Frameworks. Journal of the American Chemical Society, 2018, 140, 7710-7715.                                                                        | 6.6  | 81        |
| 42 | Perturbing the spin crossover transition activation energies in Fe(H2B(pz)2)2(bipy) with zwitterionic additions. Journal of Physics Condensed Matter, 2018, 30, 305503.                                                                        | 0.7  | 7         |
| 43 | Conversion of Lignin Models by Photoredox Catalysis. ChemSusChem, 2018, 11, 3071-3080.                                                                                                                                                         | 3.6  | 39        |
| 44 | Carbazole–triazine based donor–acceptor porous organic frameworks for efficient visible-light<br>photocatalytic aerobic oxidation reactions. Journal of Materials Chemistry A, 2018, 6, 15154-15161.                                           | 5.2  | 59        |
| 45 | Acid and Base Resistant Zirconium Polyphenolateâ€Metalloporphyrin Scaffolds for Efficient<br>CO <sub>2</sub> Photoreduction. Advanced Materials, 2018, 30, 1704388.                                                                            | 11.1 | 184       |
| 46 | A core–shell metal–organic-framework (MOF)-based smart nanocomposite for efficient<br>NIR/H <sub>2</sub> O <sub>2</sub> -responsive photodynamic therapy against hypoxic tumor cells.<br>Journal of Materials Chemistry B, 2017, 5, 2390-2394. | 2.9  | 83        |
| 47 | Fine Tuning the Redox Potentials of Carbazolic Porous Organic Frameworks for Visible-Light<br>Photoredox Catalytic Degradation of Lignin <i>β-</i> O-4 Models. ACS Catalysis, 2017, 7, 5062-5070.                                              | 5.5  | 128       |
| 48 | Visible-Light-Driven Self-Hydrogen Transfer Hydrogenolysis of Lignin Models and Extracts into<br>Phenolic Products. ACS Catalysis, 2017, 7, 4571-4580.                                                                                         | 5.5  | 191       |
| 49 | Self-Supported BINOL-Derived Phosphoric Acid Based on a Chiral Carbazolic Porous Framework.<br>Organic Letters, 2017, 19, 6072-6075.                                                                                                           | 2.4  | 24        |
| 50 | Hydrogen bond-directed encapsulation of metalloporphyrin into the microcages of zeolite<br>imidazolate frameworks for synergistic biomimetic catalysis. Catalysis Science and Technology, 2016,<br>6, 5848-5855.                               | 2.1  | 16        |
| 51 | Evaluating topologically diverse metal–organic frameworks for cryo-adsorbed hydrogen storage.<br>Energy and Environmental Science, 2016, 9, 3279-3289.                                                                                         | 15.6 | 231       |
| 52 | Photocatalytic Oxidation–Hydrogenolysis of Lignin β-O-4 Models via a Dual Light Wavelength<br>Switching Strategy. ACS Catalysis, 2016, 6, 7716-7721.                                                                                           | 5.5  | 165       |
| 53 | "π-Holeâ^'π―Interaction Promoted Photocatalytic Hydrodefluorination via Inner-Sphere Electron<br>Transfer. Journal of the American Chemical Society, 2016, 138, 15805-15808.                                                                   | 6.6  | 61        |
| 54 | Aerobic Oxidation of Olefins and Lignin Model Compounds Using Photogenerated<br>Phthalimide- <i>N</i> -oxyl Radical. Journal of Organic Chemistry, 2016, 81, 9131-9137.                                                                        | 1.7  | 59        |

Jian Zhang

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A New Approach to Non-Coordinating Anions: Lewis Acid Enhancement of Porphyrin Metal Centers in a<br>Zwitterionic Metal–Organic Framework. Journal of the American Chemical Society, 2016, 138,<br>10293-10298.    | 6.6 | 85        |
| 56 | Highly Porous Zirconium Metal–Organic Frameworks with β-UH <sub>3</sub> -like Topology Based on<br>Elongated Tetrahedral Linkers. Journal of the American Chemical Society, 2016, 138, 8380-8383.                  | 6.6 | 76        |
| 57 | Donor–Acceptor Fluorophores for Visible-Light-Promoted Organic Synthesis: Photoredox/Ni Dual<br>Catalytic C(sp <sup>3</sup> )–C(sp <sup>2</sup> ) Cross-Coupling. ACS Catalysis, 2016, 6, 873-877.                 | 5.5 | 638       |
| 58 | Carbazolic Porous Organic Framework as an Efficient, Metal-Free Visible-Light Photocatalyst for<br>Organic Synthesis. ACS Catalysis, 2015, 5, 2250-2254.                                                           | 5.5 | 234       |
| 59 | Porphyrin-Metalation-Mediated Tuning of Photoredox Catalytic Properties in Metal–Organic<br>Frameworks. ACS Catalysis, 2015, 5, 5283-5291.                                                                         | 5.5 | 212       |
| 60 | Facile fabrication of color-tunable and white light emitting nano-composite films based on layered rare-earth hydroxides. Journal of Materials Chemistry C, 2015, 3, 2326-2333.                                    | 2.7 | 64        |
| 61 | Synthesis of two metal-porphyrin frameworks assembled from porphyrin building motifs, 5, 10, 15, 20-tetrapyridylporphyrin and their base catalyzed property. Inorganic Chemistry Communication, 2015, 61, 100-104. | 1.8 | 12        |
| 62 | Facile synthesis of azo-linked porous organic frameworks via reductive homocoupling for selective CO <sub>2</sub> capture. Journal of Materials Chemistry A, 2014, 2, 13831-13834.                                 | 5.2 | 122       |
| 63 | Self-assembly of biaxial discorectangular lead carbonate nanosheets into stacked ribbons studied by SAXS and HAADF-STEM tomographic tilt series. Soft Matter, 2014, 10, 9511-9522.                                 | 1.2 | 5         |
| 64 | Direct Xâ€ray Observation of Trapped CO <sub>2</sub> in a Predesigned Porphyrinic Metal–Organic<br>Framework. Chemistry - A European Journal, 2014, 20, 7632-7637.                                                 | 1.7 | 39        |
| 65 | Facile Control of the Charge Density and Photocatalytic Activity of an Anionic Indium Porphyrin<br>Framework via in Situ Metalation. Journal of the American Chemical Society, 2014, 136, 15881-15884.             | 6.6 | 144       |
| 66 | Porphyrinic porous organic frameworks: preparation and post-synthetic modification via<br>demetallation–remetallation. Journal of Materials Chemistry A, 2014, 2, 14876-14882.                                     | 5.2 | 34        |
| 67 | Fabrication, gradient extraction and surface polarity-dependent photoluminescence of cow milk-derived carbon dots. RSC Advances, 2014, 4, 58084-58089.                                                             | 1.7 | 31        |
| 68 | Importance of the DNA "bond―in programmable nanoparticle crystallization. Proceedings of the<br>National Academy of Sciences of the United States of America, 2014, 111, 14995-15000.                              | 3.3 | 55        |
| 69 | Porosity Enhancement of Carbazolic Porous Organic Frameworks Using Dendritic Building Blocks for<br>Gas Storage and Separation. Chemistry of Materials, 2014, 26, 4023-4029.                                       | 3.2 | 160       |
| 70 | Recent Advances in Ionic Metal-Organic Frameworks: Design, Synthesis, and Application. Current<br>Organic Chemistry, 2014, 18, 1973-2001.                                                                          | 0.9 | 20        |
| 71 | Plasmonâ€Mediated Synthesis of Silver Cubes with Unusual Twinning Structures Using Short<br>Wavelength Excitation. Small, 2013, 9, 1947-1953.                                                                      | 5.2 | 61        |
| 72 | A "pillar-freeâ€ <del>,</del> highly porous metalloporphyrinic framework exhibiting eclipsed porphyrin arrays.<br>Chemical Communications, 2013, 49, 2828.                                                         | 2.2 | 47        |

| #  | Article                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Assembly of reconfigurable one-dimensional colloidal superlattices due to a synergy of fundamental nanoscale forces. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2240-2245.                                     | 3.3  | 144       |
| 74 | Defining Rules for the Shape Evolution of Gold Nanoparticles. Journal of the American Chemical Society, 2012, 134, 14542-14554.                                                                                                                                 | 6.6  | 609       |
| 75 | Stepwise Evolution of Spherical Seeds into 20-Fold Twinned Icosahedra. Science, 2012, 337, 954-957.                                                                                                                                                             | 6.0  | 187       |
| 76 | Correlating the structure and localized surface plasmon resonance of single silver right bipyramids.<br>Nanotechnology, 2012, 23, 444005.                                                                                                                       | 1.3  | 51        |
| 77 | Plasmon Length: A Universal Parameter to Describe Size Effects in Gold Nanoparticles. Journal of<br>Physical Chemistry Letters, 2012, 3, 1479-1483.                                                                                                             | 2.1  | 191       |
| 78 | Pyridineâ€Based Lanthanide Complexes Combining MRI and NIR Luminescence Activities. Chemistry - A<br>European Journal, 2012, 18, 1419-1431.                                                                                                                     | 1.7  | 89        |
| 79 | Synthesis and Isolation of {110}-Faceted Gold Bipyramids and Rhombic Dodecahedra. Journal of the American Chemical Society, 2011, 133, 6170-6173.                                                                                                               | 6.6  | 142       |
| 80 | Bottom-Up Synthesis of Gold Octahedra with Tailorable Hollow Features. Journal of the American<br>Chemical Society, 2011, 133, 10414-10417.                                                                                                                     | 6.6  | 69        |
| 81 | Shape Control of Gold Nanoparticles by Silver Underpotential Deposition. Nano Letters, 2011, 11, 3394-3398.                                                                                                                                                     | 4.5  | 341       |
| 82 | Synthesis of Silver Nanorods by Low Energy Excitation of Spherical Plasmonic Seeds. Nano Letters, 2011, 11, 2495-2498.                                                                                                                                          | 4.5  | 192       |
| 83 | Plasmonâ€Mediated Synthesis of Heterometallic Nanorods and Icosahedra. Angewandte Chemie -<br>International Edition, 2011, 50, 3543-3547.                                                                                                                       | 7.2  | 89        |
| 84 | Concave Cubic Gold Nanocrystals with High-Index Facets. Journal of the American Chemical Society, 2010, 132, 14012-14014.                                                                                                                                       | 6.6  | 513       |
| 85 | DNA-nanoparticle superlattices formed from anisotropic building blocks. Nature Materials, 2010, 9, 913-917.                                                                                                                                                     | 13.3 | 596       |
| 86 | Photomediated Synthesis of Silver Triangular Bipyramids and Prisms: The Effect of pH and BSPP.<br>Journal of the American Chemical Society, 2010, 132, 12502-12510.                                                                                             | 6.6  | 176       |
| 87 | Nanopod Formation through Gold Nanoparticle Templated and Catalyzed Cross-linking of Polymers<br>Bearing Pendant Propargyl Ethers. Journal of the American Chemical Society, 2010, 132, 15151-15153.                                                            | 6.6  | 24        |
| 88 | Plasmonâ€Mediated Synthesis of Silver Triangular Bipyramids. Angewandte Chemie - International<br>Edition, 2009, 48, 7787-7791.                                                                                                                                 | 7.2  | 151       |
| 89 | Multiroute Synthesis of Porous Anionic Frameworks and Size-Tunable Extraframework Organic<br>Cation-Controlled Gas Sorption Properties. Journal of the American Chemical Society, 2009, 131,<br>16027-16029.                                                    | 6.6  | 247       |
| 90 | Azuleneâ€Moietyâ€Based Ligand for the Efficient Sensitization of Four Nearâ€Infrared Luminescent<br>Lanthanide Cations: Nd <sup>3+</sup> , Er <sup>3+</sup> , Tm <sup>3+</sup> , and Yb <sup>3+</sup> .<br>Chemistry - A European Journal, 2008, 14, 1264-1272. | 1.7  | 93        |

| #   | Article                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Multiple Functions of Ionic Liquids in the Synthesis of Threeâ€Dimensional Lowâ€Connectivity<br>Homochiral and Achiral Frameworks. Angewandte Chemie - International Edition, 2008, 47, 5434-5437.                                                                                         | 7.2 | 187       |
| 92  | Pyridine-based lanthanide complexes: towards bimodal agents operating as near infrared luminescent and MRI reporters. Chemical Communications, 2008, , 6591.                                                                                                                               | 2.2 | 132       |
| 93  | Synthesis and Structural Properties of Lanthanide Complexes Formed with Tropolonate Ligands.<br>Inorganic Chemistry, 2007, 46, 6473-6482.                                                                                                                                                  | 1.9 | 31        |
| 94  | Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters. Science, 2007, 315, 220-222.                                                                                                                                                                              | 6.0 | 1,709     |
| 95  | A Strategy to Protect and Sensitize Near-Infrared Luminescent Nd <sup>3+</sup> and Yb <sup>3+</sup> :<br>Organic Tropolonate Ligands for the Sensitization of Ln <sup>3+</sup> -Doped NaYF <sub>4</sub><br>Nanocrystals. Journal of the American Chemical Society, 2007, 129, 14834-14835. | 6.6 | 136       |
| 96  | Preparation, crystal structure and luminescent properties of the 3-D netlike supramolecular<br>lanthanide picrate complexes with 2,2â€2-[1,2-phenylenebis(oxy)]bis(N-benzylacetamide). Inorganica<br>Chimica Acta, 2006, 359, 1207-1214.                                                   | 1.2 | 16        |
| 97  | Preparation, properties and structure of uncommon (10,3)-a netted rare earth complexes with an amide type tripodal ligand. Polyhedron, 2005, 24, 1160-1166.                                                                                                                                | 1.0 | 32        |
| 98  | Crystal structures and luminescent properties of the lanthanide picrate complexes with an amide-type tripodal ligand. Inorganic Chemistry Communication, 2005, 8, 1018-1021.                                                                                                               | 1.8 | 24        |
| 99  | Sensitization of Near-Infrared-Emitting Lanthanide Cations in Solution by Tropolonate Ligands.<br>Angewandte Chemie - International Edition, 2005, 44, 2508-2512.                                                                                                                          | 7.2 | 220       |
| 100 | 2,4-Bis[2-(benzylaminocarbonyl)phenoxymethyl]-1,3,5-trimethylbenzene. Acta Crystallographica Section<br>E: Structure Reports Online, 2005, 61, o2489-o2490.                                                                                                                                | 0.2 | 0         |
| 101 | Novel three-dimensional network generated from the reaction of Eu(NO3)3 with an amide type tripodal ligand. Dalton Transactions RSC, 2002, , 832.                                                                                                                                          | 2.3 | 39        |