Daria Andreeva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7311277/publications.pdf

Version: 2024-02-01

93 papers

3,793 citations

34 h-index 60 g-index

97 all docs 97
docs citations

97 times ranked 4775 citing authors

#	Article	IF	CITATIONS
1	Multifunctional 2D materials for antiviral protection and detection. National Science Review, 2022, 9, nwab095.	4.6	8
2	Electroâ€Thermo Controlled Water Valve Based on 2D Graphene–Cellulose Hydrogels. Advanced Functional Materials, 2022, 32, .	7.8	10
3	Two-dimensional adaptive membranes with programmable water and ionic channels. Nature Nanotechnology, 2021, 16, 174-180.	15.6	86
4	Silver melamine thin film as a flexible platform for SERS analysis. Nanoscale, 2021, 13, 7375-7380.	2.8	5
5	TECHNOLOGY AND APPLICATIONS OF GRAPHENE OXIDE MEMBRANES. Surface Review and Letters, 2021, 28, 2140004.	0.5	10
6	Programmable Soft-Matter Electronics. Journal of Physical Chemistry Letters, 2021, 12, 2017-2022.	2.1	16
7	Allâ€Dielectric Nanostructures with a Thermoresponsible Dynamic Polymer Shell. Angewandte Chemie, 2021, 133, 12847-12851.	1.6	1
8	Allâ€Dielectric Nanostructures with a Thermoresponsible Dynamic Polymer Shell. Angewandte Chemie - International Edition, 2021, 60, 12737-12741.	7.2	10
9	Electrically Controlled Thermal Radiation from Reduced Graphene Oxide Membranes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 27278-27283.	4.0	12
10	ENHANCEMENT OF REDUCED GRAPHENE OXIDE BOLOMETRIC PHOTORESPONSE VIA ADDITION OF GRAPHENE QUANTUM DOTS. Surface Review and Letters, 2021, 28, 2140011.	0.5	2
11	Grapheneâ€Based Technologies for Tackling COVID‶9 and Future Pandemics. Advanced Functional Materials, 2021, 31, 2107407.	7.8	43
12	Nanoarchitectonics of hyperbolic paraboloid 2D Graphene Oxide Membranes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 2073-2079.	0.6	4
13	Technology and Applications of Graphene Oxide Membranes. , 2021, , 379-422.		2
14	Enhancement of Reduced Graphene Oxide Bolometric Photoresponse via Addition of Graphene Quantum Dots., 2021,, 423-436.		0
15	Robust and Flexible Optically Active 2D Membranes Based on Encapsulation of Liquid Crystals in Graphene Oxide Pockets. Advanced Materials Interfaces, 2021, 8, 2101432.	1.9	6
16	Grinding exfoliation for scalable production of 2D materials. National Science Review, 2020, 7, 559-560.	4.6	5
17	Piezoelectricity in Monolayer Hexagonal Boron Nitride. Advanced Materials, 2020, 32, e1905504.	11.1	87
18	Piezoelectric Materials: Piezoelectricity in Monolayer Hexagonal Boron Nitride (Adv. Mater. 1/2020). Advanced Materials, 2020, 32, 2070006.	11.1	0

#	Article	IF	CITATIONS
19	Polymer Coatings: Lightâ€toâ€Heat Photothermal Dynamic Properties of Polypyrroleâ€Based Coating for Regenerative Therapy and Labâ€onâ€aâ€Chip Applications (Adv. Mater. Interfaces 21/2020). Advanced Materials Interfaces, 2020, 7, 2070117.	1.9	О
20	Perspectives in the design and application of composites based on graphene derivatives and bioâ€based polymers. Polymer International, 2020, 69, 1173-1186.	1.6	23
21	Polyelectrolyte multilayers for drug delivery. , 2020, , 183-209.		4
22	Sustainable Personal Protective Clothing for Healthcare Applications: A Review. ACS Nano, 2020, 14, 12313-12340.	7.3	252
23	Lightâ€toâ€Heat Photothermal Dynamic Properties of Polypyrroleâ€Based Coating for Regenerative Therapy and Labâ€onâ€aâ€Chip Applications. Advanced Materials Interfaces, 2020, 7, 2000980.	1.9	9
24	Tick-Borne Encephalitis Electrochemical Detection by Multilayer Perceptron on Liquid–Metal Interface. ACS Applied Bio Materials, 2020, 3, 7352-7356.	2.3	12
25	Coupling pH-Regulated Multilayers with Inorganic Surfaces for Bionic Devices and Infochemistry. Langmuir, 2019, 35, 8543-8556.	1.6	15
26	Layered material platform for surface plasmon resonance biosensing. Scientific Reports, 2019, 9, 20286.	1.6	55
27	Rapidly oscillating microbubbles force development of micro- and mesoporous interfaces and composition gradients in solids. Ultrasonics Sonochemistry, 2019, 51, 439-443.	3.8	5
28	Planar and van der Waals heterostructures for vertical tunnelling single electron transistors. Nature Communications, 2019, 10, 230.	5.8	43
29	Phase structuring in metal alloys: Ultrasound-assisted top-down approach to engineering of nanostructured catalytic materials. Ultrasonics Sonochemistry, 2017, 35, 556-562.	3.8	11
30	Microbubbles trigger oscillation of crystal size in solids. Physical Chemistry Chemical Physics, 2017, 19, 6286-6291.	1.3	21
31	Photomobility and photohealing of cellulose-based hybrids. Europhysics Letters, 2017, 119, 38003.	0.7	6
32	Using a chitosan nanolayer as an efficient pH buffer to protect pH-sensitive supramolecular assemblies. Physical Chemistry Chemical Physics, 2017, 19, 23843-23848.	1.3	17
33	Light-Induced Proton Pumping with a Semiconductor: Vision for Photoproton Lateral Separation and Robust Manipulation. ACS Applied Materials & Samp; Interfaces, 2017, 9, 24282-24289.	4.0	22
34	How Can One Controllably Use of Natural Î"pH in Polyelectrolyte Multilayers?. Advanced Materials Interfaces, 2017, 4, 1600282.	1.9	34
35	Use of high-intensity ultrasound for production of antimicrobial and self-cleaning surfaces. , 2017, , 229-264.		3
36	Ultrasonically Produced Porous Sponge Layer on Titanium to Guide Cell Behavior. Advanced Engineering Materials, 2016, 18, 476-483.	1.6	18

3

#	Article	IF	CITATIONS
37	Switching the Stiffness of Polyelectrolyte Assembly by Light to Control Behavior of Supported Cells. Macromolecular Bioscience, 2016, 16, 1422-1431.	2.1	32
38	Local pH Gradient Initiated by Light on TiO ₂ for Lightâ€Triggered Modulation of Polyhistidineâ€Tagged Proteins. ChemElectroChem, 2016, 3, 1306-1310.	1.7	22
39	Effect of Cavitation Bubble Collapse on the Modification of Solids: Crystallization Aspects. Langmuir, 2016, 32, 11072-11085.	1.6	32
40	Ultrasound-Assisted Synthesis of Electrocatalysts for Hydrogen Production., 2016,, 525-552.		1
41	Lightâ€Induced Water Splitting Causes Highâ€Amplitude Oscillation of pHâ€6ensitive Layerâ€byâ€Layer Assembl on TiO ₂ . Angewandte Chemie - International Edition, 2016, 55, 13001-13004.	ies 7.2	42
42	Lightâ€Induced Water Splitting Causes Highâ€Amplitude Oscillation of pHâ€Sensitive Layerâ€byâ€Layer Assembl on TiO ₂ . Angewandte Chemie, 2016, 128, 13195-13198.	ies 1.6	4
43	Shape-Dependent Interactions of Palladium Nanocrystals with Hydrogen. Small, 2016, 12, 2450-2458.	5.2	34
44	Controllable manipulation of crystallinity and morphology of aluminium surfaces using high intensity ultrasound. Applied Acoustics, 2016, 103, 190-194.	1.7	9
45	Ultrasound-Assisted Synthesis of Electrocatalysts for Hydrogen Production. , 2016, , 1-28.		O
46	Sonogenerated metal-hydrogen sponges for reactive hard templating. Chemical Communications, 2015, 51, 7606-7609.	2.2	12
47	Ultrasound-Assisted Synthesis of Electrocatalysts. , 2015, , 1-28.		0
48	Highly Efficient Photodegradation of Organic Pollutants Assisted by Sonoluminescence. Photochemistry and Photobiology, 2015, 91, 59-67.	1.3	6
49	Up to which temperature ultrasound can heat the particle?. Ultrasonics Sonochemistry, 2015, 26, 9-14.	3.8	24
50	The use of ultrasonic cavitation for near-surface structuring of robust and low-cost AlNi catalysts for hydrogen production. Green Chemistry, 2015, 17, 2745-2749.	4.6	37
51	Self-healing properties of layer-by-layer assembled multilayers. Polymer International, 2015, 64, 713-723.	1.6	54
52	Effect of high intensity ultrasound on Al3Ni2, Al3Ni crystallite size in binary AlNi (50 wt% of Ni) alloy. Ultrasonics Sonochemistry, 2015, 23, 26-30.	3.8	32
53	Ultrasound assisted formation of Al–Ni electrocatalyst for hydrogen evolution. Ultrasonics Sonochemistry, 2015, 23, 142-147.	3.8	39
54	Layer-by-Layer Approach for Design of Chemical Sensors and Biosensors. Current Organic Chemistry, 2015, 19, 1097-1116.	0.9	19

#	Article	lF	Citations
55	Hierarchical Materials: SERS Platforms of Plasmonic Hydrophobic Surfaces for Analyte Concentration: Hierarchically Assembled Gold Nanorods on Anodized Aluminum (Part. Part. Syst.) Tj ETQq1	1 0.7843314	rgBT ØOverlock
56	SERS Platforms of Plasmonic Hydrophobic Surfaces for Analyte Concentration: Hierarchically Assembled Gold Nanorods on Anodized Aluminum. Particle and Particle Systems Characterization, 2014, 31, 1134-1140.	1.2	18
57	Layer-by-Layer Assembled Hybrid Materials for Sustainable Applications. Current Organic Chemistry, 2014, 18, 2315-2333.	0.9	14
58	Bio-inspired ultrasound assisted construction of synthetic sponges. Journal of Materials Chemistry A, 2013, 1, 7547.	5.2	22
59	Surface Nanoarchitecture for Bioâ€Applications: Selfâ€Regulating Intelligent Interfaces. Advanced Functional Materials, 2013, 23, 4483-4506.	7.8	79
60	Efficient three-component coupling catalysed by mesoporous copper–aluminum based nanocomposites. Green Chemistry, 2013, 15, 1238.	4.6	88
61	Layer-by-Layer approaches for formation of smart self-healing materials. Polymer Chemistry, 2013, 4, 4834.	1.9	109
62	Formation of polypyrrole/metal hybrid interfacial layer with self-regulation functions via ultrasonication. Bioinspired, Biomimetic and Nanobiomaterials, 2013, 2, 123-129.	0.7	7
63	Metal Capsules: Nanoengineered Metal Surface Capsules: Construction of a Metal-Protection System (Small 6/2012). Small, 2012, 8, 819-819.	5.2	1
64	Sononanoengineered magnesium–polypyrrole hybrid capsules with synergetic trigger release. Journal of Materials Chemistry, 2012, 22, 13841.	6.7	26
65	Sononanostructuring of zinc-based materials. RSC Advances, 2012, 2, 12460.	1.7	9
66	Large-Area Organization of pNIPAM-Coated Nanostars as SERS Platforms for Polycyclic Aromatic Hydrocarbons Sensing in Gas Phase. Langmuir, 2012, 28, 9168-9173.	1.6	94
67	Nanoengineered Metal Surface Capsules: Construction of a Metalâ€Protection System. Small, 2012, 8, 820-825.	5.2	45
68	Sonochemical Activation of Al/Ni Hydrogenation Catalyst. Advanced Functional Materials, 2012, 22, 3128-3135.	7.8	49
69	Generation of a Porous Luminescent Structure Through Ultrasonically Induced Pathways of Silicon Modification. Angewandte Chemie - International Edition, 2012, 51, 5138-5142.	7.2	33
70	Ultrasound driven formation of metal-supported nanocatalysts. Microporous and Mesoporous Materials, 2012, 154, 164-169.	2.2	22
71	Cavitation Engineered 3D Sponge Networks and Their Application in Active Surface Construction. Advanced Materials, 2012, 24, 985-989.	11.1	76
72	Active Surfaces: Cavitation Engineered 3D Sponge Networks and Their Application in Active Surface Construction (Adv. Mater. 7/2012). Advanced Materials, 2012, 24, 984-984.	11.1	1

#	Article	IF	Citations
73	Titanium dioxide-assisted photocatalytic induction of prophages to lytic cycle. Photochemical and Photobiological Sciences, 2011, 10, 1974.	1.6	15
74	Silver coated aluminium microrods as highly colloidal stable SERS platforms. Nanoscale, 2011, 3, 3265.	2.8	24
75	ULTRASOUND-ASSISTED FORMATION OF METAL BASED NANOCOMPOSITES. , 2011, , .		0
76	Sonochemical formation of metal sponges. Nanoscale, 2011, 3, 985-993.	2.8	53
77	Novel and Effective Copper–Aluminum Propane Dehydrogenation Catalysts. Chemistry - A European Journal, 2011, 17, 12254-12256.	1.7	34
78	Ultrasound-driven design of metal surface nanofoams. Nanoscale, 2010, 2, 722.	2.8	76
79	Layer-by-Layer Polyelectrolyte/Inhibitor Nanostructures for Metal Corrosion Protection. ACS Applied Materials & Samp; Interfaces, 2010, 2, 1954-1962.	4.0	171
80	Cross-Linkable Polyelectrolyte Multilayer Films of Tailored Charge Density. Chemistry of Materials, 2010, 22, 3323-3331.	3.2	13
81	Sonochemical Design of Cerium-Rich Anticorrosion Nanonetwork on Metal Surface. Langmuir, 2010, 26, 16973-16979.	1.6	29
82	Ultrasound-assisted design of metal nanocomposites. Chemical Communications, 2010, 46, 7897.	2.2	35
83	Application of Inhibitorâ€Loaded Halloysite Nanotubes in Active Antiâ€Corrosive Coatings. Advanced Functional Materials, 2009, 19, 1720-1727.	7.8	243
84	Surfaceâ€Modified Mesoporous SiO ₂ Containers for Corrosion Protection. Advanced Functional Materials, 2009, 19, 2373-2379.	7.8	227
85	Polyelectrolyte Multilayered Nanofilms as a Novel Approach for the Protection of Hydrogen Storage Materials. ACS Applied Materials & Samp; Interfaces, 2009, 1, 996-1001.	4.0	22
86	Hollow Polypyrrole Containers with Regulated Uptake/Release Properties. Langmuir, 2009, 25, 4780-4786.	1.6	43
87	Smart self-repairing protective coatings. Materials Today, 2008, 11, 24-30.	8.3	180
88	Solâ€Gel/Polyelectrolyte Active Corrosion Protection System. Advanced Functional Materials, 2008, 18, 3137-3147.	7.8	115
89	Selfâ€Healing Anticorrosion Coatings Based on pHâ€Sensitive Polyelectrolyte/Inhibitor Sandwichlike Nanostructures. Advanced Materials, 2008, 20, 2789-2794.	11.1	300
90	Buffering polyelectrolyte multilayers for active corrosion protection. Journal of Materials Chemistry, 2008, 18, 1738.	6.7	96

#	Article	IF	CITATION
91	Novel Type of Self-Assembled Polyamide and Polyimide Nanoengineered ShellsFabrication of Microcontainers with Shielding Properties. Langmuir, 2007, 23, 9031-9036.	1.6	38
92	Geometrical Features of Hydrogen Bonded Complexes Involving Sterically Hindered Pyridines. Journal of Physical Chemistry A, 2006, 110 , $10872-10879$.	1.1	51
93	Magnetic Microcapsules with Low Permeable Polypyrrole Skin Layer. Macromolecular Rapid Communications, 2006, 27, 931-936.	2.0	75