
## Lisheng Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7310982/publications.pdf Version: 2024-02-01



LISHENC CUO

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Directly converting CO2 into a gasoline fuel. Nature Communications, 2017, 8, 15174.                                                                                                                                   | 12.8 | 652       |
| 2  | Integrated tuneable synthesis of liquid fuels via Fischer–Tropsch technology. Nature Catalysis, 2018,<br>1, 787-793.                                                                                                   | 34.4 | 300       |
| 3  | Confinement Effect and Synergistic Function of H-ZSM-5/Cu-ZnO-Al <sub>2</sub> O <sub>3</sub><br>Capsule Catalyst for One-Step Controlled Synthesis. Journal of the American Chemical Society, 2010,<br>132, 8129-8136. | 13.7 | 263       |
| 4  | A Core/Shell Catalyst Produces a Spatially Confined Effect and Shape Selectivity in a Consecutive Reaction. Angewandte Chemie - International Edition, 2008, 47, 353-356.                                              | 13.8 | 239       |
| 5  | Significant Advances in C1 Catalysis: Highly Efficient Catalysts and Catalytic Reactions. ACS Catalysis, 2019, 9, 3026-3053.                                                                                           | 11.2 | 238       |
| 6  | Rationally Designing Bifunctional Catalysts as an Efficient Strategy To Boost CO <sub>2</sub><br>Hydrogenation Producing Value-Added Aromatics. ACS Catalysis, 2019, 9, 895-901.                                       | 11.2 | 236       |
| 7  | Catalysis Chemistry of Dimethyl Ether Synthesis. ACS Catalysis, 2014, 4, 3346-3356.                                                                                                                                    | 11.2 | 232       |
| 8  | Confined small-sized cobalt catalysts stimulate carbon-chain growth reversely by modifying ASF law of Fischer–Tropsch synthesis. Nature Communications, 2018, 9, 3250.                                                 | 12.8 | 186       |
| 9  | Recent progress for direct synthesis of dimethyl ether from syngas on the heterogeneous bifunctional hybrid catalysts. Applied Catalysis B: Environmental, 2017, 217, 494-522.                                         | 20.2 | 181       |
| 10 | One-pass selective conversion of syngas to <i>para</i> -xylene. Chemical Science, 2017, 8, 7941-7946.                                                                                                                  | 7.4  | 154       |
| 11 | Promotional effect of La2O3 and CeO2 on Ni/γ-Al2O3 catalysts for CO2 reforming of CH4. Applied<br>Catalysis A: General, 2010, 385, 92-100.                                                                             | 4.3  | 147       |
| 12 | Recent advances in direct catalytic hydrogenation of carbon dioxide to valuable C <sub>2+</sub><br>hydrocarbons. Journal of Materials Chemistry A, 2018, 6, 23244-23262.                                               | 10.3 | 144       |
| 13 | An Introduction of CO <sub>2</sub> Conversion by Dry Reforming with Methane and New Route of Low-Temperature Methanol Synthesis. Accounts of Chemical Research, 2013, 46, 1838-1847.                                   | 15.6 | 137       |
| 14 | A New Method of Low-Temperature Methanol Synthesis. Journal of Catalysis, 2001, 197, 224-227.                                                                                                                          | 6.2  | 130       |
| 15 | One-step synthesis of H–β zeolite-enwrapped Co/Al2O3 Fischer–Tropsch catalyst with high spatial selectivity. Journal of Catalysis, 2009, 265, 26-34.                                                                   | 6.2  | 126       |
| 16 | Directly converting carbon dioxide to linear $\hat{l}\pm$ -olefins on bio-promoted catalysts. Communications Chemistry, 2018, 1, .                                                                                     | 4.5  | 123       |
| 17 | Multiple-Functional Capsule Catalysts: A Tailor-Made Confined Reaction Environment for the Direct<br>Synthesis of Middle Isoparaffins from Syngas. Chemistry - A European Journal, 2006, 12, 8296-8304.                | 3.3  | 121       |
| 18 | Designing a Capsule Catalyst and Its Application for Direct Synthesis of Middle Isoparaffins. Langmuir, 2005, 21, 1699-1702.                                                                                           | 3.5  | 120       |

| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Effect of catalytic site position: Nickel nanocatalyst selectively loaded inside or outside carbon nanotubes for methane dry reforming. Fuel, 2013, 108, 430-438.                                                             | 6.4  | 120       |
| 20 | Direct Synthesis of Ethanol from Dimethyl Ether and Syngas over Combined Hâ€Mordenite and Cu/ZnO<br>Catalysts. ChemSusChem, 2010, 3, 1192-1199.                                                                               | 6.8  | 118       |
| 21 | Tandem catalytic synthesis of light isoparaffin from syngas via Fischer–Tropsch synthesis by newly<br>developed core–shell-like zeolite capsule catalysts. Catalysis Today, 2013, 215, 29-35.                                 | 4.4  | 106       |
| 22 | Direct conversion of CO2 to aromatics with high yield via a modified Fischer-Tropsch synthesis pathway. Applied Catalysis B: Environmental, 2020, 269, 118792.                                                                | 20.2 | 106       |
| 23 | Highly-Dispersed Metallic Ru Nanoparticles Sputtered on H-Beta Zeolite for Directly Converting<br>Syngas to Middle Isoparaffins. ACS Catalysis, 2014, 4, 1-8.                                                                 | 11.2 | 98        |
| 24 | Design of a core–shell catalyst: an effective strategy for suppressing side reactions in syngas for<br>direct selective conversion to light olefins. Chemical Science, 2020, 11, 4097-4105.                                   | 7.4  | 95        |
| 25 | Three-component hybrid catalyst for direct synthesis of isoparaffin via modified Fischer–Tropsch<br>synthesis. Catalysis Communications, 2003, 4, 108-111.                                                                    | 3.3  | 90        |
| 26 | Direct and Oriented Conversion of CO <sub>2</sub> into Valueâ€Added Aromatics. Chemistry - A<br>European Journal, 2019, 25, 5149-5153.                                                                                        | 3.3  | 89        |
| 27 | Methane reforming with carbon dioxide over mesoporous nickel–alumina composite catalyst.<br>Chemical Engineering Journal, 2013, 221, 25-31.                                                                                   | 12.7 | 85        |
| 28 | Metal 3D printing technology for functional integration of catalytic system. Nature Communications, 2020, 11, 4098.                                                                                                           | 12.8 | 82        |
| 29 | Ordered mesoporous alumina-supported bimetallic Pd–Ni catalysts for methane dry reforming reaction. Catalysis Science and Technology, 2016, 6, 6542-6550.                                                                     | 4.1  | 73        |
| 30 | A new method of bimodal support preparation and its application in Fischer–Tropsch synthesis.<br>Catalysis Communications, 2001, 2, 311-315.                                                                                  | 3.3  | 69        |
| 31 | Direct CO2 hydrogenation to light olefins by suppressing CO by-product formation. Fuel Processing Technology, 2019, 196, 106174.                                                                                              | 7.2  | 69        |
| 32 | Direct Conversion of CO <sub>2</sub> to Ethanol Boosted by Intimacy-Sensitive Multifunctional Catalysts. ACS Catalysis, 2021, 11, 11742-11753.                                                                                | 11.2 | 69        |
| 33 | Controllable encapsulation of cobalt clusters inside carbon nanotubes as effective catalysts for<br>Fischer–Tropsch synthesis. Catalysis Today, 2013, 215, 24-28.                                                             | 4.4  | 66        |
| 34 | A double-shell capsule catalyst with core–shell-like structure for one-step exactly controlled synthesis of dimethyl ether from CO2 containing syngas. Catalysis Today, 2011, 171, 229-235.                                   | 4.4  | 65        |
| 35 | Freezing copper as a noble metal–like catalyst for preliminary hydrogenation. Science Advances, 2018,<br>4, eaau3275.                                                                                                         | 10.3 | 64        |
| 36 | Highly Ordered Mesoporous Fe <sub>2</sub> O <sub>3</sub> –ZrO <sub>2</sub> Bimetal Oxides for an<br>Enhanced CO Hydrogenation Activity to Hydrocarbons with Their Structural Stability. ACS Catalysis,<br>2017, 7, 5955-5964. | 11.2 | 63        |

| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Facile one-step synthesis of mesoporous Ni-Mg-Al catalyst for syngas production using coupled methane reforming process. Fuel, 2018, 211, 1-10.                                                                               | 6.4  | 62        |
| 38 | Tuning interaction between cobalt catalysts and nitrogen dopants in carbon nanospheres to promote<br>Fischer-Tropsch synthesis. Applied Catalysis B: Environmental, 2019, 248, 73-83.                                         | 20.2 | 58        |
| 39 | Direct synthesis of isoparaffin by modified Fischer–Tropsch synthesis using hybrid catalyst of iron<br>catalyst and zeolite. Catalysis Today, 2005, 104, 37-40.                                                               | 4.4  | 55        |
| 40 | H-type zeolite coated iron-based multiple-functional catalyst for direct synthesis of middle isoparaffins from syngas. Applied Catalysis A: General, 2011, 394, 195-200.                                                      | 4.3  | 55        |
| 41 | Surface Impregnation Combustion Method to Prepare Nanostructured Metallic Catalysts without<br>Further Reduction: As-Burnt Co/SiO <sub>2</sub> Catalysts for Fischer–Tropsch Synthesis. ACS<br>Catalysis, 2011, 1, 1225-1233. | 11.2 | 52        |
| 42 | Facile synthesis of H-type zeolite shell on a silica substrate for tandem catalysis. Chemical Communications, 2012, 48, 1263-1265.                                                                                            | 4.1  | 51        |
| 43 | Study on the preparation of Cu/ZnO catalyst by sol–gel auto-combustion method and its application for low-temperature methanol synthesis. Applied Catalysis A: General, 2011, 401, 46-55.                                     | 4.3  | 49        |
| 44 | Design of ultra-active iron-based Fischer-Tropsch synthesis catalysts over spherical mesoporous carbon with developed porosity. Chemical Engineering Journal, 2018, 334, 714-724.                                             | 12.7 | 48        |
| 45 | Selective Synthesis of Middle Isoparaffins via a Two-Stage Fischerâ^'Tropsch Reaction:Â Activity<br>Investigation for a Hybrid Catalyst. Industrial & Engineering Chemistry Research, 2005, 44, 769-775.                      | 3.7  | 47        |
| 46 | Nitrogen-rich mesoporous carbon supported iron catalyst with superior activity for Fischer-Tropsch synthesis. Carbon, 2018, 130, 304-314.                                                                                     | 10.3 | 47        |
| 47 | Active and regioselective rhodium catalyst supported on reduced graphene oxide for 1-hexene hydroformylation. Catalysis Science and Technology, 2016, 6, 1162-1172.                                                           | 4.1  | 45        |
| 48 | Promoting effect of noble metals to Co/SiO2 catalysts for hydroformylation of 1-hexene. Catalysis<br>Communications, 2001, 2, 75-80.                                                                                          | 3.3  | 44        |
| 49 | Combined methane dry reforming and methane partial oxidization for syngas production over high dispersion Ni based mesoporous catalyst. Fuel Processing Technology, 2019, 188, 98-104.                                        | 7.2  | 44        |
| 50 | Synthesis of isoalkanes over Fe–Zn–Zr/HY composite catalyst through carbon dioxide hydrogenation.<br>Catalysis Communications, 2007, 8, 1711-1714.                                                                            | 3.3  | 43        |
| 51 | Fabrication of active Cu–Zn nanoalloys on H-ZSM5 zeolite for enhanced dimethyl ether synthesis via syngas. Journal of Materials Chemistry A, 2014, 2, 8637.                                                                   | 10.3 | 43        |
| 52 | Selective formation of linear-alpha olefins (LAOs) by CO2 hydrogenation over bimetallic Fe/Co-Y catalyst. Catalysis Communications, 2019, 130, 105759.                                                                        | 3.3  | 42        |
| 53 | Capsule-like zeolite catalyst fabricated by solvent-free strategy for para-Xylene formation from CO2<br>hydrogenation. Applied Catalysis B: Environmental, 2022, 303, 120906.                                                 | 20.2 | 42        |
| 54 | Development of platinum-based bimodal pore catalyst for CO2 reforming of CH4. Catalysis Today, 2010, 153, 150-155.                                                                                                            | 4.4  | 40        |

| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | One-Pot Hydrothermal Synthesis of Nitrogen Functionalized Carbonaceous Material Catalysts with<br>Embedded Iron Nanoparticles for CO <sub>2</sub> Hydrogenation. ACS Sustainable Chemistry and<br>Engineering, 2019, 7, 8331-8339.             | 6.7  | 40        |
| 56 | Beyond Cars: Fischerâ€Tropsch Synthesis for Nonâ€Automotive Applications. ChemCatChem, 2019, 11,<br>1412-1424.                                                                                                                                 | 3.7  | 38        |
| 57 | Spinel-structure catalyst catalyzing CO <sub>2</sub> hydrogenation to full spectrum alkenes with an ultra-high yield. Chemical Communications, 2020, 56, 9372-9375.                                                                            | 4.1  | 38        |
| 58 | A sol–gel auto-combustion method to prepare Cu/ZnO catalysts for low-temperature methanol<br>synthesis. Catalysis Science and Technology, 2012, 2, 2569.                                                                                       | 4.1  | 37        |
| 59 | Insight into solvent-free synthesis of MOR zeolite and its laboratory scale production. Microporous and Mesoporous Materials, 2019, 280, 187-194.                                                                                              | 4.4  | 37        |
| 60 | Space-Confined Self-Regulation Mechanism from a Capsule Catalyst to Realize an Ethanol Direct<br>Synthesis Strategy. ACS Catalysis, 2020, 10, 1366-1374.                                                                                       | 11.2 | 37        |
| 61 | Direct syngas conversion to liquefied petroleum gas: Importance of a multifunctional metal-zeolite interface. Applied Energy, 2018, 209, 1-7.                                                                                                  | 10.1 | 35        |
| 62 | PPh3 functionalized Rh/rGO catalyst for heterogeneous hydroformylation: Bifunctional reduction of graphene oxide by organic ligand. Chemical Engineering Journal, 2017, 330, 863-869.                                                          | 12.7 | 34        |
| 63 | Probing Hydrophobization of a Cu/ZnO Catalyst for Suppression of Water–Gas Shift Reaction in<br>Syngas Conversion. ACS Catalysis, 2021, 11, 4633-4643.                                                                                         | 11.2 | 34        |
| 64 | Silicalite-1 membrane encapsulated Rh/activated-carbon catalyst for hydroformylation of 1-hexene with high selectivity to normal aldehyde. Journal of Membrane Science, 2010, 347, 220-227.                                                    | 8.2  | 33        |
| 65 | Filter and buffer-pot confinement effect of hollow sphere catalyst for promoted activity and enhanced selectivity. Journal of Materials Chemistry A, 2013, 1, 5670.                                                                            | 10.3 | 33        |
| 66 | Jet fuel synthesis via Fischer–Tropsch synthesis with varied 1-olefins as additives using Co/ZrO2–SiO2<br>bimodal catalyst. Fuel, 2016, 171, 159-166.                                                                                          | 6.4  | 33        |
| 67 | Enhanced Liquid Fuel Production from CO <sub>2</sub> Hydrogenation: Catalytic Performance of<br>Bimetallic Catalysts over a Two‣tage Reactor System. ChemistrySelect, 2018, 3, 13705-13711.                                                    | 1.5  | 33        |
| 68 | Efficient and New Production Methods of Chemicals and Liquid Fuels by Carbon Monoxide<br>Hydrogenation. ACS Omega, 2020, 5, 49-56.                                                                                                             | 3.5  | 33        |
| 69 | Selective Conversion of CO <sub>2</sub> into <i>para</i> â€Xylene over a<br>ZnCr <sub>2</sub> O <sub>4</sub> â€ZSMâ€5 Catalyst. ChemSusChem, 2020, 13, 6541-6545.                                                                              | 6.8  | 33        |
| 70 | Combining wet impregnation and dry sputtering to prepare highly-active CoPd/H-ZSM5 ternary catalysts applied for tandem catalytic synthesis of isoparaffins. Catalysis Science and Technology, 2014, 4, 1260.                                  | 4.1  | 32        |
| 71 | Citric acid assisted one-step synthesis of highly dispersed metallic Co/SiO2 without further<br>reduction: As-prepared Co/SiO2 catalysts for Fischer–Tropsch synthesis. Catalysis Today, 2014, 228,<br>206-211.                                | 4.4  | 32        |
| 72 | Bifunctional Capsule Catalyst of Al <sub>2</sub> O <sub>3</sub> @Cu with Strengthened Dehydration<br>Reaction Field for Direct Synthesis of Dimethyl Ether from Syngas. Industrial & Engineering<br>Chemistry Research, 2019, 58, 22905-22911. | 3.7  | 31        |

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | A Catalyst for Oneâ€step Isoparaffin Production via Fischer–Tropsch Synthesis: Growth of a<br>Hâ€Mordenite Shell Encapsulating a Fused Iron Core. ChemCatChem, 2013, 5, 3101-3106.                                              | 3.7  | 30        |
| 74 | Enhancing catalytic performance of activated carbon supported Rh catalyst on heterogeneous<br>hydroformylation of 1-hexene via introducing surface oxygen-containing groups. Applied Catalysis A:<br>General, 2016, 527, 53-59. | 4.3  | 30        |
| 75 | Macroscopic assembly style of catalysts significantly determining their efficiency for converting CO <sub>2</sub> to gasoline. Catalysis Science and Technology, 2019, 9, 5401-5412.                                            | 4.1  | 30        |
| 76 | Thermocatalytic hydrogenation of <scp>CO<sub>2</sub></scp> into aromatics by tailorâ€made catalysts: Recent advancements and perspectives. EcoMat, 2021, 3, e12080.                                                             | 11.9 | 29        |
| 77 | Designing a novel dual bed reactor to realize efficient ethanol synthesis from dimethyl ether and syngas. Catalysis Science and Technology, 2018, 8, 2087-2097.                                                                 | 4.1  | 28        |
| 78 | Urea-derived Cu/ZnO catalyst being dried by supercritical CO2 for low-temperature methanol synthesis. Fuel, 2020, 268, 117213.                                                                                                  | 6.4  | 27        |
| 79 | Heteroatom doped iron-based catalysts prepared by urea self-combustion method for efficient CO2<br>hydrogenation. Fuel, 2020, 276, 118102.                                                                                      | 6.4  | 27        |
| 80 | Boosting liquid hydrocarbons selectivity from CO2 hydrogenation by facilely tailoring surface acid properties of zeolite via a modified Fischer-Tropsch synthesis. Fuel, 2021, 306, 121684.                                     | 6.4  | 26        |
| 81 | A Capsule Catalyst with a Zeolite Membrane Prepared by Direct Liquid Membrane Crystallization.<br>ChemSusChem, 2012, 5, 862-866.                                                                                                | 6.8  | 25        |
| 82 | Tuning interactions between zeolite and supported metal by physical-sputtering to achieve higher catalytic performances. Scientific Reports, 2013, 3, 2813.                                                                     | 3.3  | 25        |
| 83 | Highly selective and multifunctional Cu/ZnO/Zeolite catalyst for one-step dimethyl ether synthesis:<br>Preparing catalyst by bimetallic physical sputtering. Fuel, 2013, 112, 140-144.                                          | 6.4  | 25        |
| 84 | Mn–Fe nanoparticles on a reduced graphene oxide catalyst for enhanced olefin production from syngas in a slurry reactor. RSC Advances, 2018, 8, 14854-14863.                                                                    | 3.6  | 25        |
| 85 | A Wellâ€Defined Core–Shellâ€Structured Capsule Catalyst for Direct Conversion of CO <sub>2</sub><br>into Liquefied Petroleum Gas. ChemSusChem, 2020, 13, 2060-2065.                                                             | 6.8  | 23        |
| 86 | Multi-Promoters Regulated Iron Catalyst with Well-Matching Reverse Water-Gas Shift and Chain<br>Propagation for Boosting CO2 Hydrogenation. Journal of CO2 Utilization, 2021, 52, 101700.                                       | 6.8  | 22        |
| 87 | A novel low-temperature methanol synthesis method from CO/H2/CO2 based on the synergistic effect between solid catalyst and homogeneous catalyst. Catalysis Today, 2010, 149, 98-104.                                           | 4.4  | 21        |
| 88 | Surface impregnation combustion method to prepare nanostructured metallic catalysts without<br>further reduction: As-burnt Cu–ZnO/SiO2 catalyst for low-temperature methanol synthesis. Catalysis<br>Today, 2012, 185, 54-60.   | 4.4  | 20        |
| 89 | Realizing efficient carbon dioxide hydrogenation to liquid hydrocarbons by tandem catalysis design.<br>EnergyChem, 2020, 2, 100038.                                                                                             | 19.1 | 20        |
| 90 | Hierarchical nano-sized ZnZr-Silicalite-1 multifunctional catalyst for selective conversion of ethanol to butadiene. Applied Catalysis B: Environmental, 2022, 301, 120822.                                                     | 20.2 | 20        |

| #   | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Preparation of hierarchically meso-macroporous hematite Fe2O3 using PMMA as imprint template and its reaction performance for Fischer–Tropsch synthesis. Catalysis Communications, 2011, 13, 44-48.                                         | 3.3  | 19        |
| 92  | Direct synthesis of liquefied petroleum gas from syngas over H-ZSM-5 enwrapped Pd-based zeolite capsule catalyst. Catalysis Today, 2018, 303, 77-85.                                                                                        | 4.4  | 19        |
| 93  | Direct Conversion of CO <sub>2</sub> to Aromatics over K–Zn–Fe/ZSM-5 Catalysts via a<br>Fischer–Tropsch Synthesis Pathway. Industrial & Engineering Chemistry Research, 2022, 61,<br>10336-10346.                                           | 3.7  | 18        |
| 94  | Green Synthesis of Rice Bran Microsphere Catalysts Containing Natural Biopromoters. ChemCatChem, 2015, 7, 1642-1645.                                                                                                                        | 3.7  | 17        |
| 95  | Structure and surface characteristics of Fe-promoted Ni/Al <sub>2</sub> O <sub>3</sub> catalysts for hydrogenation of 1,4-butynediol to 1,4-butenediol in a slurry-bed reactor. Catalysis Science and Technology, 2019, 9, 6598-6605.       | 4.1  | 17        |
| 96  | Quick microwave assembling nitrogen-regulated graphene supported iron nanoparticles for Fischer-Tropsch synthesis. Chemical Engineering Journal, 2022, 429, 132063.                                                                         | 12.7 | 17        |
| 97  | A hierarchically spherical Co-based zeolite catalyst with aggregated nanorods structure for<br>improved Fischer–Tropsch synthesis reaction activity and isoparaffin selectivity. Microporous and<br>Mesoporous Materials, 2016, 233, 62-69. | 4.4  | 16        |
| 98  | Effects of surface hydroxyl groups induced by the co-precipitation temperature on the catalytic performance of direct synthesis of isobutanol from syngas. Fuel, 2019, 237, 1021-1028.                                                      | 6.4  | 16        |
| 99  | Isoparaffin-rich gasoline synthesis from DME over Ni-modified HZSM-5. Catalysis Science and Technology, 2016, 6, 8089-8097.                                                                                                                 | 4.1  | 15        |
| 100 | An efficient microcapsule catalyst for one-step ethanol synthesis from dimethyl ether and syngas.<br>Fuel, 2021, 283, 118971.                                                                                                               | 6.4  | 15        |
| 101 | Catalytic oligomerization of isobutyl alcohol to jet fuels over dealuminated zeolite Beta. Catalysis<br>Today, 2021, 368, 196-203.                                                                                                          | 4.4  | 15        |
| 102 | Insights into the synergistic effect of active centers over ZnMg/SBA-15 catalysts in direct synthesis of butadiene from ethanol. Reaction Chemistry and Engineering, 2021, 6, 548-558.                                                      | 3.7  | 14        |
| 103 | One-Pot Hydrothermal Synthesis of Multifunctional ZnZrTUD-1 Catalysts for Highly Efficient Direct<br>Synthesis of Butadiene from Ethanol. ACS Sustainable Chemistry and Engineering, 2021, 9, 10569-10578.                                  | 6.7  | 14        |
| 104 | Transformation of LPG to light olefins on composite HZSM-5/SAPO-5. New Journal of Chemistry, 2021, 45, 4860-4866.                                                                                                                           | 2.8  | 14        |
| 105 | LDH-Derived (CuZn) <i><sub>x</sub></i> Al <i><sub>y</sub></i> Bifunctional Catalyst for Direct<br>Synthesis of Dimethyl Ether from Syngas. Industrial & Engineering Chemistry Research, 2020, 59,<br>11087-11097.                           | 3.7  | 13        |
| 106 | Iron catalysts supported on nitrogen functionalized carbon for improved CO2 hydrogenation performance. Catalysis Communications, 2021, 149, 106216.                                                                                         | 3.3  | 13        |
| 107 | Selectively Converting Biomass to Jet Fuel in Largeâ€scale Apparatus. ChemCatChem, 2017, 9, 2668-2674.                                                                                                                                      | 3.7  | 12        |
| 108 | Fischer–Tropsch synthesis over iron catalysts with corncob-derived promoters. Journal of Energy Chemistry, 2017, 26, 632-638.                                                                                                               | 12.9 | 11        |

| #   | Article                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Recent advances in multifunctional capsule catalysts in heterogeneous catalysis. Chinese Journal of<br>Chemical Physics, 2018, 31, 393-403.                                                   | 1.3 | 9         |
| 110 | Effects of calcination temperatures on the structure–activity relationship of<br>Ni–La/Al <sub>2</sub> O <sub>3</sub> catalysts for syngas methanation. RSC Advances, 2020, 10,<br>4166-4174. | 3.6 | 9         |
| 111 | Selective direct conversion of aqueous ethanol into butadiene <i>via</i> rational design of multifunctional catalysts. Catalysis Science and Technology, 2022, 12, 2210-2222.                 | 4.1 | 9         |
| 112 | Functionalized Natural Carbon‣upported Nanoparticles as Excellent Catalysts for Hydrocarbon<br>Production. Chemistry - an Asian Journal, 2017, 12, 366-371.                                   | 3.3 | 7         |
| 113 | Solvent-free anchoring nano-sized zeolite on layered double hydroxide for highly selective transformation of syngas to gasoline-range hydrocarbons. Fuel, 2019, 253, 249-256.                 | 6.4 | 7         |
| 114 | Enhanced α-olefins selectivity by promoted CO adsorption on ZrO2@FeCu catalyst. Catalysis Today, 2021, 375, 290-297.                                                                          | 4.4 | 7         |
| 115 | A Study on the Effect of pH Value of Impregnation Solution in Nickel Catalyst Preparation for Methane<br>Dry Reforming Reaction. ChemistrySelect, 2019, 4, 8953-8959.                         | 1.5 | 6         |
| 116 | NaBH <sub>4</sub> <i>Inâ€situ</i> Reduced Cobalt Catalyst Supported on Zeolite A for 1â€Hexene<br>Hydroformylation. ChemistrySelect, 2019, 4, 10447-10451.                                    | 1.5 | 6         |
| 117 | Catalytic Oligomerization of Isobutyl Alcohol to Hydrocarbon Liquid Fuels over Acidic Zeolite<br>Catalysts. ChemistrySelect, 2020, 5, 528-532.                                                | 1.5 | 6         |
| 118 | Low-pressure oxygenate synthesis via hydroformylation on promoted cobalt/active carbon catalysts.<br>Catalysis Communications, 2003, 4, 423-427.                                              | 3.3 | 5         |
| 119 | From Single Metal to Bimetallic Sites: Enhanced Higher Hydrocarbons Yield of CO <sub>2</sub><br>Hydrogenation over Bimetallic Catalysts. ChemistrySelect, 2021, 6, 5241-5247.                 | 1.5 | 5         |
| 120 | Metal 3D Printed Nickelâ€Based Self atalytic Reactor for COx Methanation. ChemCatChem, 2022, 14, .                                                                                            | 3.7 | 5         |
| 121 | Heteroatom Promoted Ni/Al <sub>2</sub> O <sub>3</sub> Catalysts for Highly Efficient Hydrogenation of 1,4â€Butynediol to 1,4â€Butenediol. ChemistrySelect, 2020, 5, 10072-10080.              | 1.5 | 4         |
| 122 | Direct Production of Hydrocarbons by Fischer-Tropsch Synthesis Using Newly Designed Catalysts.<br>Journal of the Japan Petroleum Institute, 2020, 63, 239-247.                                | 0.6 | 4         |
| 123 | Tunable CO Dissociation Assisted by H <sub>2</sub> over Cobalt Species: A Mechanistic Study by Inâ€situ<br>DRIFTS. ChemCatChem, 2021, 13, 4903-4911.                                          | 3.7 | 4         |
| 124 | A mini review on recent advances in thermocatalytic hydrogenation of carbon dioxide to value-added chemicals and fuels. , 2022, 1, 230-248.                                                   |     | 4         |
| 125 | Resistance against Carbon Deposition via Controlling Spatial Distance of Catalytic Components in<br>Methane Dehydroaromatization. Catalysts, 2021, 11, 148.                                   | 3.5 | 3         |
| 126 | Silicalite-1 encapsulated rhodium nanoparticles for hydroformylation of 1-hexene. Catalysis Today, 2023, 410, 150-156.                                                                        | 4.4 | 3         |

| #   | Article                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Probing the promotional roles of lanthanum in physicochemical properties and performance of<br>ZnZr/Si-beta catalyst for direct conversion of aqueous ethanol to butadiene. Catalysis Today, 2022, , . | 4.4 | 2         |
| 128 | Direct Synthesis of Liquefied Petroleum Gas from Carbon Dioxide Using a Copper/Zinc<br>Oxide/Zirconia/Alumina and HY Zeolite Hybrid Catalyst. ChemistrySelect, 2021, 6, 7103-7110.                     | 1.5 | 1         |
| 129 | Model smoke stream adsorption over cellulose acetate stick with three-dimensional temperature gradient by combining in-situ DRIFTS with infrared thermal imaging. Cellulose, 2022, 29, 1883-1895.      | 4.9 | 1         |
| 130 | Novel hybrid alcohol-dominated reaction network for highly selective conversion of CO2 into ethene. Chem Catalysis, 2022, 2, 933-935.                                                                  | 6.1 | 1         |
| 131 | Powerful and New Chemical Synthesis Reactions from CO2 and C1 Chemistry Innovated by Tailor-Made<br>Core–Shell Catalysts. Nanostructure Science and Technology, 2021, , 105-120.                       | 0.1 | Ο         |
| 132 | Boosting CO Hydrogenation Performance of Facile Organics Modified Iron Oxide/Reduced Graphene<br>Oxide Catalysts. Catalysis Letters, 0, , 1.                                                           | 2.6 | 0         |