Buzhou Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7310582/publications.pdf

Version: 2024-02-01

64 papers 1,992 citations

304602 22 h-index 276775
41
g-index

72 all docs 72 docs citations

times ranked

72

1802 citing authors

#	Article	IF	CITATIONS
1	The CHEMDNER corpus of chemicals and drugs and its annotation principles. Journal of Cheminformatics, 2015, 7, S2.	2.8	166
2	A comprehensive study of named entity recognition in Chinese clinical text. Journal of the American Medical Informatics Association: JAMIA, 2014, 21, 808-814.	2.2	149
3	Entity recognition from clinical texts via recurrent neural network. BMC Medical Informatics and Decision Making, 2017, 17, 67.	1.5	135
4	Real-world data medical knowledge graph: construction and applications. Artificial Intelligence in Medicine, 2020, 103, 101817.	3.8	127
5	A hybrid system for temporal information extraction from clinical text. Journal of the American Medical Informatics Association: JAMIA, 2013, 20, 828-835.	2.2	99
6	De-identification of clinical notes via recurrent neural network and conditional random field. Journal of Biomedical Informatics, 2017, 75, S34-S42.	2.5	97
7	Evaluating Word Representation Features in Biomedical Named Entity Recognition Tasks. BioMed Research International, 2014, 2014, 1-6.	0.9	94
8	Usability Study of Mainstream Wearable Fitness Devices: Feature Analysis and System Usability Scale Evaluation. JMIR MHealth and UHealth, 2018, 6, e11066.	1.8	92
9	Recognizing clinical entities in hospital discharge summaries using Structural Support Vector Machines with word representation features. BMC Medical Informatics and Decision Making, 2013, 13, S1.	1.5	88
10	CNN-based ranking for biomedical entity normalization. BMC Bioinformatics, 2017, 18, 385.	1.2	77
11	Automatic de-identification of electronic medical records using token-level and character-level conditional random fields. Journal of Biomedical Informatics, 2015, 58, S47-S52.	2.5	58
12	Effects of Semantic Features on Machine Learning-Based Drug Name Recognition Systems: Word Embeddings vs. Manually Constructed Dictionaries. Information (Switzerland), 2015, 6, 848-865.	1.7	41
13	A Labeling Method for Financial Time Series Prediction Based on Trends. Entropy, 2020, 22, 1162.	1.1	36
14	CBN: Constructing a clinical Bayesian network based on data from the electronic medical record. Journal of Biomedical Informatics, 2018, 88, 1-10.	2.5	35
15	Entity recognition in Chinese clinical text using attention-based CNN-LSTM-CRF. BMC Medical Informatics and Decision Making, 2019, 19, 74.	1.5	35
16	Clinical entity recognition using structural support vector machines with rich features., 2012,,.		32
17	An automatic system to identify heart disease risk factors in clinical texts over time. Journal of Biomedical Informatics, 2015, 58, S158-S163.	2.5	32
18	A hybrid method of recurrent neural network and graph neural network for next-period prescription prediction. International Journal of Machine Learning and Cybernetics, 2020, 11, 2849-2856.	2.3	32

#	Article	IF	CITATIONS
19	Adoption of Electronic Health Records (EHRs) in China During the Past 10 Years: Consecutive Survey Data Analysis and Comparison of Sino-American Challenges and Experiences. Journal of Medical Internet Research, 2021, 23, e24813.	2.1	32
20	Drug Name Recognition: Approaches and Resources. Information (Switzerland), 2015, 6, 790-810.	1.7	30
21	Depression Risk Prediction for Chinese Microblogs via Deep-Learning Methods: Content Analysis. JMIR Medical Informatics, 2020, 8, e17958.	1.3	28
22	A comparison of conditional random fields and structured support vector machines for chemical entity recognition in biomedical literature. Journal of Cheminformatics, 2015, 7, S8.	2.8	26
23	KGDDS: A System for Drug-Drug Similarity Measure in Therapeutic Substitution based on Knowledge Graph Curation. Journal of Medical Systems, 2019, 43, 92.	2.2	25
24	Recognizing Continuous and Discontinuous Adverse Drug Reaction Mentions from Social Media Using LSTM-CRF. Wireless Communications and Mobile Computing, 2018, 2018, 1-8.	0.8	23
25	Distributed representation and one-hot representation fusion with gated network for clinical semantic textual similarity. BMC Medical Informatics and Decision Making, 2020, 20, 72.	1.5	23
26	UTH_CCB: A report for SemEval 2014 – Task 7 Analysis of Clinical Text. , 2014, , .		22
27	Cohort selection for clinical trials using hierarchical neural network. Journal of the American Medical Informatics Association: JAMIA, 2019, 26, 1203-1208.	2.2	21
28	Network structure exploration in networks with node attributes. Physica A: Statistical Mechanics and Its Applications, 2016, 449, 240-253.	1.2	20
29	Biomedical relation extraction via knowledge-enhanced reading comprehension. BMC Bioinformatics, 2022, 23, 20.	1.2	20
30	Domain adaptation for semantic role labeling of clinical text. Journal of the American Medical Informatics Association: JAMIA, 2015, 22, 967-979.	2.2	19
31	Family history information extraction via deep joint learning. BMC Medical Informatics and Decision Making, 2019, 19, 277.	1.5	18
32	KMR: knowledge-oriented medicine representation learning for drug–drug interaction and similarity computation. Journal of Cheminformatics, 2019, 11, 22.	2.8	17
33	A Method to Learn Embedding of a Probabilistic Medical Knowledge Graph: Algorithm Development. JMIR Medical Informatics, 2020, 8, e17645.	1.3	16
34	Leveraging Multi-source knowledge for Chinese clinical named entity recognition via relational graph convolutional network. Journal of Biomedical Informatics, 2022, 128, 104035.	2.5	16
35	Feature Engineering for Drug Name Recognition in Biomedical Texts: Feature Conjunction and Feature Selection. Computational and Mathematical Methods in Medicine, 2015, 2015, 1-9.	0.7	15
36	Chemical-induced disease extraction via recurrent piecewise convolutional neural networks. BMC Medical Informatics and Decision Making, 2018, 18, 60.	1.5	15

#	Article	IF	CITATIONS
37	Extracting entities with attributes in clinical text via joint deep learning. Journal of the American Medical Informatics Association: JAMIA, 2019, 26, 1584-1591.	2.2	14
38	A fine-grained Chinese word segmentation and part-of-speech tagging corpus for clinical text. BMC Medical Informatics and Decision Making, 2019, 19, 66.	1.5	14
39	Multi-channel fusion LSTM for medical event prediction using EHRs. Journal of Biomedical Informatics, 2022, 127, 104011.	2.5	13
40	Overlapping community detection in weighted networks via a Bayesian approach. Physica A: Statistical Mechanics and Its Applications, 2017, 468, 790-801.	1.2	12
41	Drug2Vec: Knowledge-aware Feature-driven Method for Drug Representation Learning. , 2018, , .		12
42	Health Natural Language Processing: Methodology Development and Applications. JMIR Medical Informatics, 2021, 9, e23898.	1.3	12
43	Chemical-induced disease extraction via convolutional neural networks with attention., 2017,,.		11
44	Structural regularity exploration in multidimensional networks via Bayesian inference. Neural Computing and Applications, 2018, 29, 413-424.	3.2	9
45	Assessing depression risk in Chinese microblogs: a corpus and machine learning methods. , 2019, , .		9
46	A Deep Learning-Based System for PharmaCoNER. , 2019, , .		9
47	Chinese Clinical Entity Recognition via Attention-Based CNN-LSTM-CRF. , 2018, , .		7
47	Chinese Clinical Entity Recognition via Attention-Based CNN-LSTM-CRF., 2018, , . Decomposing word embedding with the capsule network. Knowledge-Based Systems, 2021, 212, 106611.	4.0	7
		4.0	
48	Decomposing word embedding with the capsule network. Knowledge-Based Systems, 2021, 212, 106611. Using Character-Level and Entity-Level Representations to Enhance Bidirectional Encoder Representation From Transformers-Based Clinical Semantic Textual Similarity Model: ClinicalSTS		7
48	Decomposing word embedding with the capsule network. Knowledge-Based Systems, 2021, 212, 106611. Using Character-Level and Entity-Level Representations to Enhance Bidirectional Encoder Representation From Transformers-Based Clinical Semantic Textual Similarity Model: ClinicalSTS Modeling Study. JMIR Medical Informatics, 2020, 8, e23357. Named Entity Recognition in Clinical Text Based on Capsule-LSTM for Privacy Protection. Lecture	1.3	7
48 49 50	Decomposing word embedding with the capsule network. Knowledge-Based Systems, 2021, 212, 106611. Using Character-Level and Entity-Level Representations to Enhance Bidirectional Encoder Representation From Transformers-Based Clinical Semantic Textual Similarity Model: ClinicalSTS Modeling Study. JMIR Medical Informatics, 2020, 8, e23357. Named Entity Recognition in Clinical Text Based on Capsule-LSTM for Privacy Protection. Lecture Notes in Computer Science, 2019, , 166-178. Temporal indexing of medical entity in Chinese clinical notes. BMC Medical Informatics and Decision	1.3	7 7 6
48 49 50	Decomposing word embedding with the capsule network. Knowledge-Based Systems, 2021, 212, 106611. Using Character-Level and Entity-Level Representations to Enhance Bidirectional Encoder Representation From Transformers-Based Clinical Semantic Textual Similarity Model: ClinicalSTS Modeling Study. JMIR Medical Informatics, 2020, 8, e23357. Named Entity Recognition in Clinical Text Based on Capsule-LSTM for Privacy Protection. Lecture Notes in Computer Science, 2019, , 166-178. Temporal indexing of medical entity in Chinese clinical notes. BMC Medical Informatics and Decision Making, 2019, 19, 17. Re-examination of Rule-Based Methods in Deidentification of Electronic Health Records: Algorithm	1.3 1.0 1.5	7 7 6

#	Article	IF	CITATION
55	Gated Semantic Difference Based Sentence Semantic Equivalence Identification. IEEE/ACM Transactions on Audio Speech and Language Processing, 2020, 28, 2770-2780.	4.0	3
56	CapsTM: capsule network for Chinese medical text matching. BMC Medical Informatics and Decision Making, 2021, 21, 94.	1.5	3
57	A Unified Machine Reading Comprehension Framework for Cohort Selection. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 379-387.	3.9	3
58	Document-level medical relation extraction via edge-oriented graph neural network based on document structure and external knowledge. BMC Medical Informatics and Decision Making, 2021, 21, 368.	1.5	3
59	Chinese Unknown Word Recognition Using Improved Conditional Random Fields. , 2008, , .		2
60	KEoG: A knowledge-aware edge-oriented graph neural network for document-level relation extraction. , 2020, , .		2
61	De-identification of Clinical Text via Bi-LSTM-CRF with Neural Language Models. AMIA Annual Symposium proceedings, 2019, 2019, 857-863.	0.2	2
62	EAPB: entropy-aware path-based metric for ontology quality. Journal of Biomedical Semantics, 2018, 9, 20.	0.9	1
63	Drug knowledge discovery via multi-task learning and pre-trained models. BMC Medical Informatics and Decision Making, 2021, 21, 251.	1.5	1
64	Novel Graph-Based Model With Biaffine Attention for Family History Extraction From Clinical Text: Modeling Study. JMIR Medical Informatics, 2021, 9, e23587.	1.3	0