Joost J Oppenheim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7310572/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cytidine acetylation yields a hypoinflammatory synthetic messenger RNA. Cell Chemical Biology, 2022, 29, 312-320.e7.	2.5	14
2	Alpha synuclein, the culprit in Parkinson disease, is required for normal immune function. Cell Reports, 2022, 38, 110090.	2.9	51
3	A TNFR2 antibody by countering immunosuppression cooperates with HMGN1 and R848 immune stimulants to inhibit murine colon cancer. International Immunopharmacology, 2021, 101, 108345.	1.7	19
4	Inhibition of two-pore channels in antigen-presenting cells promotes the expansion of TNFR2-expressing CD4 ⁺ Foxp3 ⁺ regulatory T cells. Science Advances, 2020, 6, .	4.7	13
5	Combined treatment with HMGN1 and anti-CD4 depleting antibody reverses T cell exhaustion and exerts robust anti-tumor effects in mice. , 2019, 7, 21.		11
6	Inhibition of murine hepatoma tumor growth by cryptotanshinone involves TLR7-dependent activation of macrophages and induction of adaptive antitumor immune defenses. Cancer Immunology, Immunotherapy, 2019, 68, 1073-1085.	2.0	54
7	Cryptotanshinone has curative dual anti-proliferative and immunotherapeutic effects on mouse Lewis lung carcinoma. Cancer Immunology, Immunotherapy, 2019, 68, 1059-1071.	2.0	38
8	Blockade of TNFR2 signaling enhances the immunotherapeutic effect of CpG ODN in a mouse model of colon cancer. Science Signaling, 2018, 11, .	1.6	50
9	The Future of the Cytokine Discipline. Cold Spring Harbor Perspectives in Biology, 2018, 10, a028498.	2.3	10
10	HMGN1 and R848 Synergistically Activate Dendritic Cells Using Multiple Signaling Pathways. Frontiers in Immunology, 2018, 9, 2982.	2.2	29
11	High-mobility group nucleosome binding domain 1 (HMGN1) functions as a Th1-polarizing alarmin. Seminars in Immunology, 2018, 38, 49-53.	2.7	23
12	Targeting TNFR2, an immune checkpoint stimulator and oncoprotein, is a promising treatment for cancer. Science Signaling, 2017, 10, .	1.6	62
13	Development of a Curative Therapeutic Vaccine (TheraVac) for the Treatment of Large Established Tumors. Scientific Reports, 2017, 7, 14186.	1.6	32
14	Alarmins and immunity. Immunological Reviews, 2017, 280, 41-56.	2.8	280
15	A Role for Neuronal Alpha-Synuclein in Gastrointestinal Immunity. Journal of Innate Immunity, 2017, 9, 456-463.	1.8	211
16	Therapeutic vaccine to cure large mouse hepatocellular carcinomas. Oncotarget, 2017, 8, 52061-52071.	0.8	13
17	Alarmin human α defensin HNP1 activates plasmacytoid dendritic cells by triggering NF-κB and IRF1 signaling pathways. Cytokine, 2016, 83, 53-60.	1.4	22
18	Alarmins and Antitumor Immunity. Clinical Therapeutics, 2016, 38, 1042-1053.	1.1	46

JOOST J OPPENHEIM

#	Article	IF	CITATIONS
19	TNFR2 expression by CD4 effector T cells is required to induce full-fledged experimental colitis. Scientific Reports, 2016, 6, 32834.	1.6	37
20	Suppressive activity of human regulatory T cells is maintained in the presence of TNF. Nature Medicine, 2016, 22, 16-17.	15.2	93
21	Harnessing the alarmin HMGN1 for anticancer therapy. Immunotherapy, 2015, 7, 1129-1131.	1.0	12
22	IKKα is required for the homeostasis of regulatory T cells and for the expansion of both regulatory and effector CD4 T cells. FASEB Journal, 2015, 29, 443-454.	0.2	41
23	Enhanced immunostimulatory effects of DNA-encapsulated peptide hydrogels. Biomaterials, 2015, 53, 545-553.	5.7	49
24	Effective Chemoimmunotherapy with Anti-TGFβ Antibody and Cyclophosphamide in a Mouse Model of Breast Cancer. PLoS ONE, 2014, 9, e85398.	1.1	43
25	Synergistic antitumor effects of a TGFÎ ² inhibitor and cyclophosphamide. Oncolmmunology, 2014, 3, e28247.	2.1	7
26	Evolution of the Serendipitous Discovery of Macrophageââ,¬â€œLymphocyte Interactions. Frontiers in Immunology, 2014, 5, 530.	2.2	0
27	In vitro generated Th17 cells support the expansion and phenotypic stability of CD4+Foxp3+ regulatory T cells in vivo. Cytokine, 2014, 65, 56-64.	1.4	20
28	Progranulin promotes tumour necrosis factorâ€induced proliferation of suppressive mouse <scp>CD</scp> 4 ⁺ Â <scp>F</scp> oxp3 ⁺ regulatory <scp>T</scp> cells. Immunology, 2014, 142, 193-201.	2.0	28
29	The Alarmin HMGN1 Contributes to Antitumor Immunity and Is a Potent Immunoadjuvant. Cancer Research, 2014, 74, 5989-5998.	0.4	56
30	Th17 cells and Tregs: unlikely allies. Journal of Leukocyte Biology, 2014, 95, 723-731.	1.5	81
31	TNFR2 Is Critical for the Stabilization of the CD4+Foxp3+ Regulatory T Cell Phenotype in the Inflammatory Environment. Journal of Immunology, 2013, 190, 1076-1084.	0.4	244
32	β-Defensin 2 and 3 Promote the Uptake of Self or CpG DNA, Enhance IFN-α Production by Human Plasmacytoid Dendritic Cells, and Promote Inflammation. Journal of Immunology, 2013, 191, 865-874.	0.4	98
33	Alarminâ€induced cell migration. European Journal of Immunology, 2013, 43, 1412-1418.	1.6	26
34	High-mobility group nucleosome-binding protein 1 acts as an alarmin and is critical for lipopolysaccharide-induced immune responses. Journal of Experimental Medicine, 2012, 209, 157-171.	4.2	130
35	Alarmins: awaiting a clinical response. Journal of Clinical Investigation, 2012, 122, 2711-2719.	3.9	408
36	Chemokine-like receptor 1 (CMKLR1) and chemokine (C–C motif) receptor-like 2 (CCRL2); Two multifunctional receptors with unusual properties. Experimental Cell Research, 2011, 317, 674-684.	1.2	138

JOOST J OPPENHEIM

#	Article	IF	CITATIONS
37	Contrasting effects of TNF and antiâ€TNF on the activation of effector T cells and regulatory T cells in autoimmunity. FEBS Letters, 2011, 585, 3611-3618.	1.3	88
38	TNF optimally activatives regulatory T cells by inducing TNF receptor superfamily members TNFR2, 4â€1BB and OX40. European Journal of Immunology, 2011, 41, 2010-2020.	1.6	88
39	Granulysin activates antigen-presenting cells through TLR4 and acts as an immune alarmin. Blood, 2010, 116, 3465-3474.	0.6	131
40	Coâ€expression of TNFR2 and CD25 identifies more of the functional CD4 ⁺ FOXP3 ⁺ regulatory T cells in human peripheral blood. European Journal of Immunology, 2010, 40, 1099-1106.	1.6	185
41	Specific Binding and Chemotactic Activity of mBD4 and Its Functional Orthologue hBD2 to CCR6-expressing Cells. Journal of Biological Chemistry, 2010, 285, 7028-7034.	1.6	74
42	Expression of Costimulatory TNFR2 Induces Resistance of CD4+FoxP3â ^{~,} Conventional T Cells to Suppression by CD4+FoxP3+ Regulatory T Cells. Journal of Immunology, 2010, 185, 174-182.	0.4	117
43	Human \hat{l}^2 -Defensin 2 and 3 and Their Mouse Orthologs Induce Chemotaxis through Interaction with CCR2. Journal of Immunology, 2010, 184, 6688-6694.	0.4	262
44	TNF-α: An Activator of CD4+FoxP3+TNFR2+ Regulatory T Cells. Current Directions in Autoimmunity, 2010, 11, 119-134.	8.0	99
45	The alarmin functions of high-mobility group proteins. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2010, 1799, 157-163.	0.9	41
46	Alarmins link neutrophils and dendritic cells. Trends in Immunology, 2009, 30, 531-537.	2.9	215
47	Cutting Edge: Expression of TNFR2 Defines a Maximally Suppressive Subset of Mouse CD4+CD25+FoxP3+ T Regulatory Cells: Applicability to Tumor-Infiltrating T Regulatory Cells. Journal of Immunology, 2008, 180, 6467-6471.	0.4	280
48	Eosinophil-derived neurotoxin acts as an alarmin to activate the TLR2–MyD88 signal pathway in dendritic cells and enhances Th2 immune responses. Journal of Experimental Medicine, 2008, 205, 79-90.	4.2	315
49	Chemotactic Activity of S100A7 (Psoriasin) Is Mediated by the Receptor for Advanced Glycation End Products and Potentiates Inflammation with Highly Homologous but Functionally Distinct S100A15. Journal of Immunology, 2008, 181, 1499-1506.	0.4	156
50	Lactoferrin Acts as an Alarmin to Promote the Recruitment and Activation of APCs and Antigen-Specific Immune Responses. Journal of Immunology, 2008, 180, 6868-6876.	0.4	174
51	Chemerin reveals its chimeric nature. Journal of Experimental Medicine, 2008, 205, 2187-2190.	4.2	96
52	Pertussis Toxin by Inducing IL-6 Promotes the Generation of IL-17-Producing CD4 Cells. Journal of Immunology, 2007, 178, 6123-6129.	0.4	88
53	Interaction of TNF with TNF Receptor Type 2 Promotes Expansion and Function of Mouse CD4+CD25+ T Regulatory Cells. Journal of Immunology, 2007, 179, 154-161.	0.4	464
54	High mobility group box-1 protein induces the migration and activation of human dendritic cells and acts as an alarmin. Journal of Leukocyte Biology, 2007, 81, 59-66.	1.5	336

JOOST J OPPENHEIM

#	Article	IF	CITATIONS
55	Alarmins Initiate Host Defense. Advances in Experimental Medicine and Biology, 2007, 601, 185-194.	0.8	161
56	Pertussis toxin as an adjuvant suppresses the number and function of CD4+CD25+ T regulatory cells. European Journal of Immunology, 2006, 36, 671-680.	1.6	96
57	Glucocorticoid amplifies IL-2-dependent expansion of functional FoxP3+CD4+CD25+ T regulatory cellsin vivo and enhances their capacity to suppress EAE. European Journal of Immunology, 2006, 36, 2139-2149.	1.6	206
58	Alarmins: chemotactic activators of immune responses. Current Opinion in Immunology, 2005, 17, 359-365.	2.4	718
59	Mouse Cathelin-Related Antimicrobial Peptide Chemoattracts Leukocytes Using Formyl Peptide Receptor-Like 1/Mouse Formyl Peptide Receptor-Like 2 as the Receptor and Acts as an Immune Adjuvant. Journal of Immunology, 2005, 174, 6257-6265.	0.4	206
60	Human Ribonuclease A Superfamily Members, Eosinophil-Derived Neurotoxin and Pancreatic Ribonuclease, Induce Dendritic Cell Maturation and Activation. Journal of Immunology, 2004, 173, 6134-6142.	0.4	142
61	Antimicrobial proteins act as ?alarmins? in joint immune defense. Arthritis and Rheumatism, 2004, 50, 3401-3403.	6.7	61
62	Multiple Roles of Antimicrobial Defensins, Cathelicidins, and Eosinophil-Derived Neurotoxin in Host Defense. Annual Review of Immunology, 2004, 22, 181-215.	9.5	528
63	Eosinophil-derived neurotoxin (EDN), an antimicrobial protein with chemotactic activities for dendritic cells. Blood, 2003, 102, 3396-3403.	0.6	145
64	Toll-Like Receptor 4-Dependent Activation of Dendritic Cells by Â-Defensin 2. Science, 2002, 298, 1025-1029.	6.0	870
65	Mediators of Innate Immunity That Target Immature, But Not Mature, Dendritic Cells Induce Antitumor Immunity When Genetically Fused with Nonimmunogenic Tumor Antigens. Journal of Immunology, 2001, 167, 6644-6653.	0.4	284
66	Defensins act as potent adjuvants that promote cellular and humoral immune responses in mice to a lymphoma idiotype and carrier antigens. International Immunology, 2000, 12, 691-700.	1.8	182
67	Ll-37, the Neutrophil Granule–And Epithelial Cell–Derived Cathelicidin, Utilizes Formyl Peptide Receptor–Like 1 (Fprl1) as a Receptor to Chemoattract Human Peripheral Blood Neutrophils, Monocytes, and T Cells. Journal of Experimental Medicine, 2000, 192, 1069-1074.	4.2	1,094
68	Identification of Defensin-1, Defensin-2, and CAP37/Azurocidin as T-cell Chemoattractant Proteins Released from Interleukin-8-stimulated Neutrophils. Journal of Biological Chemistry, 1996, 271, 2935-2940.	1.6	490
69	Enhancement of the primary antibody response by 2-mercaptoethanol is mediated by its action on glutathione in the serum. European Journal of Immunology, 1980, 10, 391-395.	1.6	57
70	Immunologic and Cytogenetic Studies of Chronic Lymphocytic Leukemic Cells. Blood, 1965, 26, 121-132.	0.6	132