List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7310566/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microbial conversion of steroid compounds: recent developments. Enzyme and Microbial Technology, 2003, 32, 688-705.	3.2	501
2	Phytosterols: Applications and recovery methods. Bioresource Technology, 2007, 98, 2335-2350.	9.6	275
3	Whole-cell biocatalysis in organic media. Enzyme and Microbial Technology, 1998, 23, 483-500.	3.2	269
4	Flow Bioreactors as Complementary Tools for Biocatalytic Process Intensification. Trends in Biotechnology, 2018, 36, 73-88.	9.3	237
5	Enzymes in Food Processing: A Condensed Overview on Strategies for Better Biocatalysts. Enzyme Research, 2010, 2010, 1-19.	1.8	178
6	Fluorometric determination of ethidium bromide efflux kinetics in Escherichia coli. Journal of Biological Engineering, 2009, 3, 18.	4.7	164
7	Production of Metabolites as Bacterial Responses to the Marine Environment. Marine Drugs, 2010, 8, 705-727.	4.6	158
8	Solvent tolerance in bacteria: role of efflux pumps and cross-resistance with antibiotics. International Journal of Antimicrobial Agents, 2003, 22, 211-216.	2.5	134
9	Applied microbiology and biotechnology in the conservation of stone cultural heritage materials. Applied Microbiology and Biotechnology, 2006, 73, 291-296.	3.6	109
10	Marine microbial L-asparaginase: Biochemistry, molecular approaches and applications in tumor therapy and in food industry. Microbiological Research, 2018, 208, 99-112.	5.3	97
11	Immobilization of Naringinase in PVA–Alginate Matrix Using an Innovative Technique. Applied Biochemistry and Biotechnology, 2010, 160, 2129-2147.	2.9	92
12	Bioprocess scaleâ€up: quest for the parameters to be used as criterion to move from microreactors to labâ€scale. Journal of Chemical Technology and Biotechnology, 2010, 85, 1184-1198.	3.2	89
13	Microfluidic Devices: Useful Tools for Bioprocess Intensification. Molecules, 2011, 16, 8368-8401.	3.8	86
14	Design and characterisation of an enzyme system for inulin hydrolysis. Food Chemistry, 2006, 95, 77-82.	8.2	82
15	Miniaturization in Biocatalysis. International Journal of Molecular Sciences, 2010, 11, 858-879.	4.1	74
16	Enzymes in Fish and Seafood Processing. Frontiers in Bioengineering and Biotechnology, 2016, 4, 59.	4.1	64
17	Novel lipases discovery specifically from marine organisms for industrial production and practical applications. Process Biochemistry, 2018, 70, 61-70.	3.7	61
18	Potential Applications of Carbohydrases Immobilization in the Food Industry. International Journal of Molecular Sciences, 2013, 14, 1335-1369.	4.1	58

PEDRO C B FERNANDES

#	Article	IF	CITATIONS
19	Mycobacterium sp.,Rhodococcus erythropolis, andPseudomonas putida behavior in the presence of organic solvents. Microscopy Research and Technique, 2004, 64, 215-222.	2.2	55
20	Design of a microfluidic platform for monoclonal antibody extraction using an aqueous two-phase system. Journal of Chromatography A, 2012, 1249, 1-7.	3.7	54
21	Whole-cell bioconversion of β-sitosterol in aqueous–organic two-phase systems. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 579-585.	1.8	53
22	On-chip sample preparation and analyte quantification using a microfluidic aqueous two-phase extraction coupled with an immunoassay. Lab on A Chip, 2014, 14, 4284-4294.	6.0	50
23	Immobilization of inulinase for sucrose hydrolysis. Food Chemistry, 2005, 91, 517-520.	8.2	49
24	Xylanases from marine microorganisms: A brief overview on scope, sources, features and potential applications. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140312.	2.3	49
25	Membrane transport systems and the biodegradation potential and pathogenicity of genus Rhodococcus. Frontiers in Physiology, 2014, 5, 133.	2.8	47
26	Microlitre/millilitre shaken bioreactors in fermentative and biotransformation processes – a review. Biocatalysis and Biotransformation, 2006, 24, 237-252.	2.0	44
27	Enzyme Immobilization and Co-Immobilization: Main Framework, Advances and Some Applications. Processes, 2022, 10, 494.	2.8	44
28	Biosynthesis of ethyl caproate and other short ethyl esters catalyzed by cutinase in organic solvent. Journal of Molecular Catalysis B: Enzymatic, 2009, 60, 178-185.	1.8	41
29	Galacto-oligosaccharides Synthesis from Lactose and Whey by β-Galactosidase Immobilized in PVA. Applied Biochemistry and Biotechnology, 2012, 168, 1197-1211.	2.9	41
30	Enzymatic synthesis of chiral aminoâ€alcohols by coupling transketolase and transaminaseâ€catalyzed reactions in a cascading continuousâ€flow microreactor system. Biotechnology and Bioengineering, 2018, 115, 586-596.	3.3	41
31	Sitosterol bioconversion with resting cells in liquid polymer based systems. Bioresource Technology, 2009, 100, 4050-4053.	9.6	39
32	Effect of phase composition on the whole-cell bioconversion of β-sitosterol in biphasic media. Journal of Molecular Catalysis B: Enzymatic, 2002, 19-20, 371-375.	1.8	38
33	Towards the development of a membrane reactor for enzymatic inulin hydrolysis. Journal of Membrane Science, 2006, 273, 152-158.	8.2	38
34	Determination of aqueous two phase system binodal curves using a microfluidic device. Journal of Chromatography A, 2014, 1370, 115-120.	3.7	38
35	Steroid bioconversion: Towards green processes. Food and Bioproducts Processing, 2010, 88, 12-20.	3.6	36
36	Siderophores as ââ,¬Å"Trojan Horsesââ,¬Â• tackling multidrug resistance?. Frontiers in Microbiology, 2014, 5, 290.	3.5	36

#	Article	IF	CITATIONS
37	Optimization of androstenedione production in an organic–aqueous two-liquid phase system. Journal of Molecular Catalysis B: Enzymatic, 2004, 29, 19-23.	1.8	35
38	Solvent partitioning and whole-cell sitosterol bioconversion activity in aqueous-organic two-phase systems. Enzyme and Microbial Technology, 2004, 34, 342-353.	3.2	34
39	Screening of Supports for the Immobilization of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="bold">β-Glucosidase. Enzyme Research, 2011, 2011, 1-8.</mml:mi </mml:math 	1.8	34
40	Production of glycolipid biosurfactants, mannosylerythritol lipids, from pentoses and d-glucose/d-xylose mixtures by Pseudozyma yeast strains. Process Biochemistry, 2014, 49, 1790-1799.	3.7	34
41	Behaviour of Mycobacterium sp. NRRL B-3805 whole cells in aqueous, organic-aqueous and organic media studied by fluorescence microscopy. Applied Microbiology and Biotechnology, 2004, 64, 695-701.	3.6	32
42	Isolation of a biodegradable sterol-rich fraction from industrial wastes. Bioresource Technology, 2002, 82, 253-260.	9.6	31
43	A simple method for biocatalyst immobilization using PVAâ€based hydrogel particles. Journal of Chemical Technology and Biotechnology, 2009, 84, 561-564.	3.2	31
44	Stability evaluation of an immobilized enzyme system for inulin hydrolysis. Food Chemistry, 2007, 101, 260-266.	8.2	28
45	Synthetic application and activity of cutinase in an aqueous, miniemulsion model system: Hexyl octanoate synthesis. Catalysis Today, 2011, 173, 95-102.	4.4	27
46	From Inulin to Fructose Syrups Using Sol–Gel Immobilized Inulinase. Applied Biochemistry and Biotechnology, 2011, 165, 1-12.	2.9	27
47	Acerola: importance, culture conditions, production and biochemical aspects. Fruits, 2008, 63, 93-101.	0.4	26
48	High Throughput in Biotechnology: From Shake-Flasks to Fully Instrumented Microfermentors. Recent Patents on Biotechnology, 2009, 3, 124-140.	0.8	26
49	Conversion of β-sitosterol by Mycobacterium sp. NRRL B-3805 cells immobilized on Celite supports. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 523-530.	1.8	25
50	On the feasibility of in situ steroid biotransformation and product recovery in microchannels. Chemical Engineering Journal, 2010, 160, 708-714.	12.7	24
51	Miniaturization in Biotechnology: Speeding up the Development of Bioprocesses. Recent Patents on Biotechnology, 2011, 5, 160-173.	0.8	24
52	Bioconversion of a hydrocortisone derivative in an organic-aqueous two-liquid-phase system. Enzyme and Microbial Technology, 1995, 17, 163-167.	3.2	23
53	Miniaturization of aqueous twoâ€phase extraction for biological applications: From microâ€ŧubes to microchannels. Biotechnology Journal, 2016, 11, 1498-1512.	3.5	23
54	Influence of some operational parameters on the bioconversion of sitosterol with immobilized whole cells in organic medium. Journal of Molecular Catalysis B: Enzymatic, 1998, 5, 307-310.	1.8	22

#	Article	IF	CITATIONS
55	Use of free and immobilized Pseudomonas putida cells for the reduction of a thiophene derivative in organic media. Journal of Molecular Catalysis B: Enzymatic, 2002, 19-20, 353-361.	1.8	22
56	Gelatin-immobilized pectinmethylesterase for production of low methoxyl pectin. Food Chemistry, 2004, 86, 333-337.	8.2	22
57	Optimization in the immobilization of penicillin G acylase by entrapment in xerogel particles with magnetic properties. Journal of Sol-Gel Science and Technology, 2011, 58, 545-556.	2.4	22
58	Establishing the Feasibility of Using β-Glucosidase Entrapped in Lentikats and in Sol–Gel Supports for Cellobiose Hydrolysis. Journal of Agricultural and Food Chemistry, 2013, 61, 626-634.	5.2	22
59	Sucrose Hydrolysis in a Bespoke Capillary Wall-Coated Microreactor. Catalysts, 2017, 7, 42.	3.5	22
60	Multi-Enzyme Systems in Flow Chemistry. Processes, 2021, 9, 225.	2.8	22
61	Study of key operational parameters for the side-chain cleavage of sitosterol by free mycobacterial cells in Bis-(2-ethylhexyl) phthalate. Biocatalysis and Biotransformation, 2004, 22, 189-194.	2.0	21
62	Hydroxylation of androstenedione by resting Rhodococcus sp. cells in organic media. Enzyme and Microbial Technology, 2005, 37, 718-722.	3.2	20
63	Chrysotile as a support for the immobilisation of Mycobacterium sp. NRRL B-3805 cells for the bioconversion of β-sitosterol in an organic–aqueous two-liquid phase system. Journal of Molecular Catalysis B: Enzymatic, 2005, 32, 61-65.	1.8	20
64	Continuous steroid biotransformations in microchannel reactors. New Biotechnology, 2012, 29, 227-234.	4.4	20
65	Aqueous two-phase systems for enhancing immunoassay sensitivity: Simultaneous concentration of mycotoxins and neutralization of matrix interference. Journal of Chromatography A, 2014, 1361, 67-76.	3.7	20
66	Marine enzymes and food industry: insight on existing and potential interactions. Frontiers in Marine Science, 2014, 1, .	2.5	20
67	Improved thermostable polyvinyl alcohol electrospun nanofibers with entangled naringinase used in a novel mini-packed bed reactor. Bioresource Technology, 2016, 213, 208-215.	9.6	20
68	Production of a Novel Marine Pseudomonas aeruginosa Recombinant L-Asparaginase: Insight on the Structure and Biochemical Characterization. Marine Biotechnology, 2022, 24, 599-613.	2.4	20
69	Highâ€affinity waterâ€soluble system for efficient naringinase immobilization in polyvinyl alcohol–dimethyl sulfoxide lensâ€shaped particles. Journal of Molecular Recognition, 2012, 25, 580-594.	2.1	19
70	Determination of partition coefficients of biomolecules in a microfluidic aqueous two phase system platform using fluorescence microscopy. Journal of Chromatography A, 2017, 1487, 242-247.	3.7	19
71	Comparison of two extraction procedures for determination of drugs of abuse in human saliva by highâ€performance liquid chromatography. Journal of Applied Toxicology, 2008, 28, 998-1003.	2.8	18
72	Screening for suitable solvents as substrate carriers for the microbial side-chain cleavage of sitosterol using microtitre plates. Process Biochemistry, 2009, 44, 556-561.	3.7	18

#	Article	IF	CITATIONS
73	Immobilization of mycobacterial cells onto silicone – Assessing the feasibility of the immobilized biocatalyst in the production of androstenedione from sitosterol. Bioresource Technology, 2008, 99, 2304-2311.	9.6	17
74	Recent Achievements on Siderophore Production and Application. Recent Patents on Biotechnology, 2011, 5, 183-198.	0.8	17
75	Packed bed enzyme microreactor: Application in sucrose hydrolysis as proof-of-concept. Biochemical Engineering Journal, 2015, 104, 74-81.	3.6	17
76	A multiplexed microfluidic toolbox for the rapid optimization of affinity-driven partition in aqueous two phase systems. Journal of Chromatography A, 2017, 1515, 252-259.	3.7	17
77	A simple method for point-of-need extraction, concentration and rapid multi-mycotoxin immunodetection in feeds using aqueous two-phase systems. Journal of Chromatography A, 2017, 1511, 15-24.	3.7	17
78	Mycobacterial Response to Organic Solvents and Possible Implications on Cross-Resistance With Antimicrobial Agents. Frontiers in Microbiology, 2018, 9, 961.	3.5	17
79	Recent developments in microreactor technology for biocatalysis applications. Reaction Chemistry and Engineering, 2021, 6, 815-827.	3.7	17
80	Upgrading end-of-line residues of the red seaweed Gelidium sesquipedale to polyhydroxyalkanoates using Halomonas boliviensis. Biotechnology Reports (Amsterdam, Netherlands), 2020, 27, e00491.	4.4	16
81	Modification of the activity of an a-amylase from Bacillus licheniformis by several surfactants. Electronic Journal of Biotechnology, 2006, 9, 0-0.	2.2	16
82	A microscopic perspective of a microreactor. Microscopy and Microanalysis, 2013, 19, 33-34.	0.4	15
83	An integrated approach for the detailed characterization of an immobilized enzyme. Journal of Molecular Catalysis B: Enzymatic, 2016, 125, 64-74.	1.8	15
84	A microfluidic platform for physical entrapment of yeast cells with continuous production of invertase. Journal of Chemical Technology and Biotechnology, 2017, 92, 334-341.	3.2	15
85	Microfluidic device for the point of need detection of a pathogen infection biomarker in grapes. Analyst, The, 2019, 144, 4871-4879.	3.5	15
86	Operational stability of naringinase PVA lens-shaped microparticles in batch stirred reactors and mini packed bed reactors-one step closer to industry. Bioresource Technology, 2014, 164, 362-370.	9.6	14
87	Boronic acids as efficient cross linkers for PVA: synthesis and application of tunable hollow microspheres in biocatalysis. Tetrahedron, 2016, 72, 7293-7305.	1.9	14
88	Microfluidic bioreactors for enzymatic synthesis in packed-bed reactors—Multi-step reactions and upscaling. Journal of Biotechnology, 2020, 323, 24-32.	3.8	14
89	A Multiphasic Hollow Fiber Reactor for the Whole-Cell Bioconversion of 2-Methyl-1,3-propanediol to (R)-β-Hydroxyisobutyric Acid. Biotechnology Progress, 2001, 17, 468-473.	2.6	13
90	Characterization of 24-well microtiter plate reactors for a complex multistep bioconversion: From sitosterol to androstenedione. Journal of Biotechnology, 2009, 141, 174-180.	3.8	13

#	Article	IF	CITATIONS
91	Towards the continuous production of fructose syrups from inulin using inulinase entrapped in PVA-based particles. Biocatalysis and Agricultural Biotechnology, 2014, 3, 296-302.	3.1	13
92	Cultivationâ€based strategies to find efficient marine biocatalysts. Biotechnology Journal, 2017, 12, 1700036.	3.5	13
93	Microfluidic device for multiplexed detection of fungal infection biomarkers in grape cultivars. Analyst, The, 2020, 145, 7973-7984.	3.5	13
94	Improvement of Aglycone Content in Soy Isoflavones Extract by Free and Immobilized Î'-Glucosidase and their Effects in Lipid Accumulation. Applied Biochemistry and Biotechnology, 2020, 192, 734-750.	2.9	13
95	On the feasibility of the microscale approach for a multistep biotransformation: sitosterol side chain cleavage. Journal of Chemical Technology and Biotechnology, 2007, 82, 856-863.	3.2	12
96	A new biocatalyst: Penicillin G acylase immobilized in solâ€gel microâ€particles with magnetic properties. Biotechnology Journal, 2009, 4, 695-702.	3.5	12
97	Microbial Transformations of Plant Origin Compounds as a Step in Preparation of Highly Valuable Pharmaceuticals. Journal of Drug Metabolism & Toxicology, 2016, 7, .	0.1	12
98	Production and Purification of Therapeutic Enzymes. Advances in Experimental Medicine and Biology, 2019, 1148, 1-24.	1.6	12
99	Improved specific productivity in cephalexin synthesis by immobilized PGA in silica magnetic microâ€particles. Biotechnology and Bioengineering, 2010, 107, 753-762.	3.3	11
100	Membrane-Assisted Extractive Bioconversions. Advances in Biochemical Engineering/Biotechnology, 2003, 80, 115-148.	1.1	11
101	Scalingâ€up of complex wholeâ€cell bioconversions in conventional and nonâ€conventional media. Biotechnology and Bioengineering, 2010, 106, 619-626.	3.3	10
102	Microtiter plates versus stirred mini-bioreactors in biocatalysis: A scalable approach. Bioresource Technology, 2013, 136, 30-40.	9.6	10
103	Microbial Enzymes for the Food Industry. , 2017, , 513-544.		10
104	Upgrading the organic fraction of municipal solid waste to poly(3-hydroxybutyrate). Bioresource Technology, 2019, 290, 121785.	9.6	10
105	Screening of supports for the immobilization of pectinmethylesterase from acerola(Malpighia glabra) Tj ETQq1	1 0. <u>78</u> 4314 3.2	rgBT /Overic
106	A simple imaging method for biomass determination. Journal of Microbiological Methods, 2005, 60, 135-140.	1.6	8
107	Scanning electron microscopy investigations on bis(2-ethylhexyl)phthalate treatedMycobacterium cells. Microscopy Research and Technique, 2006, 69, 613-617.	2.2	8
108	Anchoring high-throughput screening methods to scale-up bioproduction of siderophores. Process Biochemistry, 2012, 47, 416-421.	3.7	8

#	Article	IF	CITATIONS
109	Degradation of hydrocarbons and alcohols by <i>Rhodococcus erythropolis</i> DCL14: A comparison in scale performance. Biocatalysis and Biotransformation, 2007, 25, 144-150.	2.0	7
110	A microwell platform for the scaleâ€up of a multistep bioconversion to benchâ€scale reactors: Sitosterol sideâ€chain cleavage. Biotechnology Journal, 2010, 5, 402-412.	3.5	7
111	Operational stability of cutinase in organic solvent system: model esterification of alkyl esters. Journal of Chemical Technology and Biotechnology, 2010, 85, 1553-1560.	3.2	7
112	Green Solvents for Biocatalysis. , 2012, , 121-146.		7
113	Enzymatic Processing in the Food Industry. , 2018, , .		7
114	A Versatile and Fully Integrated Hand-Held Device for Microfluidic-Based Biosensing: A Case Study of Plant Health Biomarkers. IEEE Sensors Journal, 2020, 20, 14007-14015.	4.7	7
115	Enzyme Technology in Food Processing: Recent Developments and Future Prospects. , 2021, , 191-215.		7
116	Inulinase from Rhodotorula mucilaginosa: immobilization and application in the production of fructooligosaccharides. Food Science and Biotechnology, 2021, 30, 959-969.	2.6	7
117	Production, characterization and application of inulinase from fungal endophyte CCMB 328. Anais Da Academia Brasileira De Ciencias, 2012, 84, 443-454.	0.8	6
118	Characterization and immobilization of protease secreted by the fungus Moorella speciosa. 3 Biotech, 2020, 10, 419.	2.2	6
119	Improvement of enzyme stability for alkyl esters synthesis in miniemulsion systems by using media engineering. Journal of Chemical Technology and Biotechnology, 2018, 93, 1338-1346.	3.2	5
120	Continuous preparation of flavourâ€active acetate esters by direct biocatalytic esterification. Flavour and Fragrance Journal, 2020, 35, 190-196.	2.6	5
121	Mycobacterium vaccae Adaptation to Disinfectants and Hand Sanitisers, and Evaluation of Cross-Tolerance with Antimicrobials. Antibiotics, 2020, 9, 544.	3.7	5
122	β-Sitosterol Bioconversion to Androstenedione in Microtiter Plates. Methods in Molecular Biology, 2017, 1645, 167-176.	0.9	5
123	Immobilization of Fungal Cellulases Highlighting β-Glucosidase: Techniques, Supports, Chemical, and Physical Changes. Protein Journal, 2022, 41, 274-292.	1.6	5
124	Biotransformations., 2006,, 579-626.		4
125	Characterisation of biocatalysts immobilised in niobium—a new inorganic solid support. Canadian Journal of Chemical Engineering, 2013, 91, 432-440.	1.7	4

126 Enzymes in Food Processing. , 2016, , 173-199.

#	Article	IF	CITATIONS
127	Production, characterization, and immobilization of protease from the yeast <i>Rhodotorula oryzicola</i> . Biotechnology and Applied Biochemistry, 2021, 68, 1033-1043.	3.1	4
128	Biocatalysis in Biphasic Systems: General. , 0, , 189-210.		3
129	Microbial Transformations of Plant Secondary Metabolites. , 2016, , 1-41.		3
130	Coated-Wall Mini Reactor for Inulin Hydrolysis. Current Biotechnology, 2013, 2, 47-52.	0.4	3
131	Immobilization of Mycobacterium sp. cells for sitosterol side chain cleavage in organic solvents. Progress in Biotechnology, 1996, , 431-436.	0.2	2
132	Stability of free and immobilized Mycobacterium sp. cells in aqueous and organic media. Progress in Biotechnology, 1998, 15, 625-630.	0.2	2
133	Production, characterization, and immobilization of inulinase produced by <i>Pseudozyma</i> sp. (CCMB 306). Chemical Engineering Communications, 2018, 205, 1060-1068.	2.6	2
134	Immobilization of Cells With Transition Metal. Methods in Biotechnology, 2006, , 367-372.	0.2	2
135	Production of low methoxyl pectin using immobilized pectinmethylesterase silica from acerola (Malpighia glabra L.). Journal of Chemical Technology and Biotechnology, 2006, 81, 706-709.	3.2	1
136	Biocatalysis of Steroids with Mycobacterium sp. in Aqueous and Organic Media. Methods in Molecular Biology, 2017, 1645, 313-320.	0.9	1
137	Microbial Transformations of Plant Secondary Metabolites. Reference Series in Phytochemistry, 2018, , 85-124.	0.4	1
138	Development of a Point-of-Care Platform for Plant Health Assessment: A Microfluidic Approach. Proceedings (mdpi), 2018, 2, 819.	0.2	1
139	Enzymes in Sweeteners Production. Energy, Environment, and Sustainability, 2019, , 151-179.	1.0	1
140	Enzymes in Food and Feed Industries: Where Tradition Meets Innovation. , 2019, , 233-253.		1
141	Production, Characterization and Application of Inulinase from Pseudozyma sp. CCMB 300 Journal of Advances in Biotechnology, 2014, 4, 382-392.	0.1	1
142	How relevant is size in the development of bioconversion systems?. Journal of Biotechnology, 2007, 131, S85.	3.8	0
143	Probing different immobilization techniques in small-scale steroids bioconversion. Journal of Biotechnology, 2007, 131, S85.	3.8	0
144	Process intensification platforms for application in bioengineering. , 2011, , .		0

 $Process\ intensification\ platforms\ for\ application\ in\ bioengineering.\ ,\ 2011,\ ,\ .$ 144

#	Article	IF	CITATIONS
145	A quest for abundant and sustainable carbon sources in polyhydroxyalkanoates production – Are seaweeds the answer?. New Biotechnology, 2018, 44, S64.	4.4	0
146	A Portable Microfluidic System for the Detection of Health Biomarkers in Grapes at the Point of Need. , 2019, , .		0
147	Enzymes in Seafood Processing. , 2015, , 369-394.		0