Xin Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7310326/publications.pdf

Version: 2024-02-01

		430874	206112
55	2,389	18	48
papers	citations	h-index	g-index
57	57	57	3067
all docs	docs citations	times ranked	citing authors
57 all docs	57 docs citations	57 times ranked	3067 citing authors

#	Article	lF	Citations
1	Structural identification of a bacterial quorum-sensing signal containing boron. Nature, 2002, 415, 545-549.	27.8	1,379
2	Spatially extended nature of resistive switching in perovskite oxide thin films. Applied Physics Letters, 2006, 89, 063507.	3.3	92
3	A PEG-Lysozyme hydrogel harvests multiple functions as a fit-to-shape tissue sealant for internal-use of body. Biomaterials, 2019, 192, 392-404.	11.4	89
4	High performance visible light driven photocatalysts silver halides and graphitic carbon nitride (X =) Tj ETQq0 0 () rgBT /Ov	erlock 10 Tf 50
5	Rationally designed protein cross-linked hydrogel for bone regeneration via synergistic release of magnesium and zinc ions. Biomaterials, 2021, 274, 120895.	11.4	55
6	Nanostructured thin solid oxide fuel cells with high power density. Dalton Transactions, 2008, , 5501.	3.3	51
7	Recent developments of the in situ wet cell technology for transmission electron microscopies. Nanoscale, 2015, 7, 4811-4819.	5. 6	48
8	A hyperbranched amphiphilic acetal polymer for pH-sensitive drug delivery. Polymer Chemistry, 2018, 9, 169-177.	3.9	42
9	Dynamics of amphiphilic block copolymers in an aqueous solution: direct imaging of micelle formation and nanoparticle encapsulation. Nanoscale, 2019, 11, 2299-2305.	5. 6	40
10	Rational synthesis of Cu7Se4-CuxCo1-xSe2 double-shell hollow nanospheres for high performance supercapacitors. Journal of Power Sources, 2020, 480, 228741.	7.8	39
11	Electrical conductivity of epitaxial La0.6Sr0.4Co0.2Fe0.8O3â~δthin films grown by pulsed laser deposition. International Journal of Hydrogen Energy, 2010, 35, 12443-12448.	7.1	38
12	Hollow cubic double layer structured Cu ₇ S ₄ /NiS nanocomposites for high-performance supercapacitors. Journal of Materials Chemistry A, 2017, 5, 20729-20736.	10.3	37
13	Unveiling Growth Pathways of Multiply Twinned Gold Nanoparticles by <i>In Situ</i> Liquid Cell Transmission Electron Microscopy. ACS Nano, 2020, 14, 9594-9604.	14.6	36
14	In situ wet-cell TEM observation of gold nanoparticle motion in an aqueous solution. Nanoscale Research Letters, 2012, 7, 598.	5.7	34
15	Electron beam induced deposition of silicon nanostructures from a liquid phase precursor. Nanotechnology, 2012, 23, 385302.	2.6	32
16	Enlisting a Traditional Chinese Medicine to tune the gelation kinetics of a bioactive tissue adhesive for fast hemostasis or minimally invasive therapy. Bioactive Materials, 2021, 6, 905-917.	15.6	28
17	Facile and green synthesis of Au nanorods/graphene oxide nanocomposite with excellent catalytic properties for reduction of 4-nitrophenol. Journal of Materials Science, 2020, 55, 5880-5891.	3.7	23
18	Structure and conducting properties of La0.5Sr0.5CoO3â^Î films on YSZ. Thin Solid Films, 1999, 350, 130-137.	1.8	21

#	Article	IF	CITATIONS
19	Revealing the microscopic CVD growth mechanism of MoSe2 and the role of hydrogen gas during the growth procedure. Nanotechnology, 2018, 29, 314001.	2.6	18
20	In-situ liquid-cell TEM study of radial flow-guided motion of octahedral Au nanoparticles and nanoparticle clusters. Nano Research, 2018, 11, 4697-4707.	10.4	17
21	A Novel Strategy of Multiâ€element Nanocomposite Synthesis for High Performance <scp>ZnO oSe₂</scp> Supercapacitor Material Development. Chinese Journal of Chemistry, 2021, 39, 2441-2450.	4.9	16
22	Coupling PEG-LZM polymer networks with polyphenols yields suturable biohydrogels for tissue patching. Biomaterials Science, 2020, 8, 3334-3347.	5.4	15
23	A Study of Nano Materials and Their Reactions in Liquid Using <i>in situ</i> Wet Cell TEM Technology. Chinese Journal of Chemistry, 2012, 30, 2839-2843.	4.9	13
24	Buffer-Enhanced Electrical-Pulse-Induced Resistive Memory Effect in Thin Film Perovskites. Japanese Journal of Applied Physics, 2006, 45, 1602-1606.	1.5	12
25	One step photochemical synthesis of clean surfaced sponge-like porous platinum with high catalytic performances. Journal of Colloid and Interface Science, 2017, 487, 60-67.	9.4	12
26	The ultralong cycle life of solid flexible asymmetric supercapacitors based on nickel vanadium sulfide nanospheres. CrystEngComm, 2020, 22, 5226-5236.	2.6	12
27	Preparation and Characterization of Porous Carbon from Mixed Leaves for Highâ€Performance Supercapacitors. Chinese Journal of Chemistry, 2021, 39, 353-359.	4.9	12
28	La0.6Sr0.4CoO3â^î^î –Ce0.8Gd0.2O2â^îî nanocomposites prepared by a sol–gel process for intermediate temperature solid oxide fuel cell cathode applications. Journal of Materials Science, 2016, 51, 2160-2167.	3.7	11
29	Abnormal gas-liquid-solid phase transition behaviour of water observed with in situ environmental SEM. Scientific Reports, 2017, 7, 46680.	3.3	11
30	A Structural Study of Escherichia coli Cells Using an In SituLiquid Chamber TEM Technology. Journal of Analytical Methods in Chemistry, 2015, 2015, 1-7.	1.6	10
31	GSH-responsive polymeric micelles based on the thio–ene reaction for controlled drug release. RSC Advances, 2016, 6, 80896-80904.	3.6	9
32	Synergy between Structure Characteristics and the Solution Chemistry in a Near/Non-Equilibrium Oxidative Etching of Penta-Twinned Palladium Nanorods. Journal of Physical Chemistry C, 2021, 125, 4010-4020.	3.1	8
33	<i>In situ</i> liquid cell TEM observation of solution-mediated interaction behaviour of Au/CdS nanoclusters. New Journal of Chemistry, 2019, 43, 12548-12554.	2.8	7
34	A Study of Electron Beam Induced Deposition and Nano Device Fabrication Using Liquid Cell TEM Technology. Chinese Journal of Chemistry, 2014, 32, 399-404.	4.9	6
35	A study of the composition distribution at the interface using the MCs+-SIMS technique. Applied Surface Science, 1995, 89, 169-173.	6.1	5
36	Growth of (001) oriented La0.5Sr0.5CoO3 films directly on SiO2/Si substrate by pulsed laser deposition. Thin Solid Films, 2006, 497, 329-332.	1.8	5

#	Article	IF	CITATIONS
37	In Situ Liquid Cell Transmission Electron Microscopy Observation of Dynamic Process of Oleic Acid Emulsion with Gold Nanorods. Journal of Physical Chemistry C, 2020, 124, 26018-26025.	3.1	5
38	Effects Associated with Nanostructure Fabrication Using In Situ Liquid Cell TEM Technology. Nano-Micro Letters, 2015, 7, 385-391.	27.0	4
39	Direct Observation of Growth and Selfâ€assembly of Pt Nanoclusters in Water with the Aid of a Triblock Polymer Using ⟨i⟩in situ⟨ i⟩ Liquid Cell Transmission Electron Microscopy (⟨scp⟩TEM⟨ scp⟩). Chinese Journal of Chemistry, 2017, 35, 1278-1283.	4.9	4
40	Facile Synthesis and in situ TEM Observation of Nanoporous Pd for Enhanced Catalytic Applications. Chinese Journal of Chemistry, 2019, 37, 565-569.	4.9	4
41	Interactions of sub-five-nanometer diameter colloidal palladium nanoparticles in solution investigated <i>via</i> liquid cell transmission electron microscopy. RSC Advances, 2020, 10, 34781-34787.	3.6	4
42	Rational synthesis of porous CuO/Cu2O/NiCo2O4 3D composites for high-performance supercapacitors. Journal of Materials Research, 2021, 36, 387-396.	2.6	4
43	The development and applications of <italic>in situ</italic> liquid chamber TEM technologies. Chinese Science Bulletin, 2017, 62, 2886-2892.	0.7	4
44	Synthesis of VS ₂ /NiS Nanocomposites by In Situ Growing NiS Clusters on VS ₂ Ultrathin Nanoplates for High Performance Supercapacitors. ChemElectroChem, 2022, 9, .	3.4	4
45	Perovskite RRAM devices with metal/insulator/PCMO/metal heterostructures. , 0, , .		3
46	Large Area and Depth-Profiling Dislocation Imaging and Strain Analysis in Si/SiGe/Si Heterostructures. Microscopy and Microanalysis, 2014, 20, 1521-1527.	0.4	3
47	Observation of the Gold Nanorods/Graphene Composite Formation and Motion with <i>in situ</i> Liquid Cell Transmission Electron Microscopy. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2019, 35, 808-815.	4.9	3
48	Effect of rapid thermal annealing on Ti–AlN interfaces. Applied Surface Science, 1999, 148, 235-240.	6.1	2
49	In situ liquid cell TEM and SEM observation of the CdS-graphene oxide nanocomposite. Journal of Materials Research, 0, , .	2.6	2
50	Temperature Control in Liquid Cells for TEM., 0,, 127-139.		1
51	Back Cover: Direct Observation of Growth and Self-assembly of Pt Nanoclusters in Water with the Aid of a Triblock Polymer Using in situ Liquid Cell Transmission Electron Microscopy (TEM) (Chin. J. Chem.) Tj ETQq1 I	1 01.3 8431	4 i gBT /Over
52	Characterization of Heterostructural Palladium Deposition on Spherical Gold Nanoparticles by & lt;i>In situ Liquid Cell Transmission Electron Microscopy. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2017, 33, 458-463.	4.9	1
53	Cover Feature: Synthesis of VS ₂ /NiS Nanocomposites by In Situ Growing NiS Clusters on VS ₂ Ultrathin Nanoplates for High Performance Supercapacitors (ChemElectroChem) Tj ETQq1 1 0.	7 8⁄4 314 rg	gB T /Overloc
54	Ultrasonic Synthesis of Au / AgCl Hybrid Cubes and Their Evolution Under Electron Beam Irradiation. Nano, 2015, 10, 1550086.	1.0	0

#	Article	IF	CITATIONS
55	Facile and Green Synthesis of Clean Porous Pd/2D-material Nanocomposites with Improved Catalytic Properties in 4-nitrophenol Reduction Reaction - The First Part. Current Chinese Science, 2021, 1, 252-259.	0.5	0