
Gerard F Curley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7310291/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A randomized, double-blind, placebo-controlled trial of intravenous alpha-1 antitrypsin for ARDS secondary to COVID-19. Med, 2022, 3, 233-248.e6.	2.2	17
2	Effects of brain tissue oxygen (PbtO2) guided management on patient outcomes following severe traumatic brain injury: A systematic review and meta-analysis. Journal of Clinical Neuroscience, 2022, 99, 349-358.	0.8	16
3	Repair of acute respiratory distress syndrome by stromal cell administration (REALIST): a structured study protocol for an open-label dose-escalation phase 1 trial followed by a randomised, triple-blind, allocation concealed, placebo-controlledÂphase 2 trial. Trials, 2022, 23, 401.	0.7	3
4	Alpha-1 antitrypsin for cystic fibrosis complicated by severe cytokinemic COVID-19. Journal of Cystic Fibrosis, 2021, 20, 31-35.	0.3	16
5	Facial pressure injuries and the COVID-19 pandemic: skin protection care to enhance staff safety in an acute hospital setting. Journal of Wound Care, 2021, 30, 162-170.	0.5	17
6	α1-Antitrypsin: Key Player or Bystander in Acute Respiratory Distress Syndrome?. Anesthesiology, 2021, 134, 792-808.	1.3	6
7	Intra-vital imaging of mesenchymal stromal cell kinetics in the pulmonary vasculature during infection. Scientific Reports, 2021, 11, 5265.	1.6	31
8	Death in hospital following ICU discharge: insights from the LUNG SAFE study. Critical Care, 2021, 25, 144.	2.5	12
9	A randomised, double-blind, placebo-controlled, pilot trial of intravenous plasma purified alpha-1 antitrypsin for SARS-CoV-2-induced Acute Respiratory Distress Syndrome: a structured summary of a study protocol for a randomised, controlled trial. Trials, 2021, 22, 288.	0.7	9
10	The economic impact of pressure ulcers among patients in intensive care units. A systematic review. Journal of Tissue Viability, 2021, 30, 168-177.	0.9	17
11	COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study. Infection, 2021, 49, 889-905.	2.3	62
12	Interleukin-6: obstacles to targeting a complex cytokine in critical illness. Lancet Respiratory Medicine,the, 2021, 9, 643-654.	5.2	120
13	SARS-CoV-2 uses major endothelial integrin αvβ3 to cause vascular dysregulation in-vitro during COVID-19. PLoS ONE, 2021, 16, e0253347.	1.1	48
14	ADAMTS13 regulation of VWF multimer distribution in severe COVIDâ€19. Journal of Thrombosis and Haemostasis, 2021, 19, 1914-1921.	1.9	58
15	Dysregulated plasma lipid mediator profiles in critically ill COVID-19 patients. PLoS ONE, 2021, 16, e0256226.	1.1	34
16	Persistent endotheliopathy in the pathogenesis of long COVID syndrome. Journal of Thrombosis and Haemostasis, 2021, 19, 2546-2553.	1.9	208
17	Supervision, Interprofessional Collaboration, and Patient Safety in Intensive Care Units during the COVID-19 Pandemic. ATS Scholar, 2021, 2, 397-414.	0.5	7
18	The Royal College of surgeons multidisciplinary guidelines on elective tracheostomy insertion in COVID-19 ventilated patients. Journal of the Royal College of Surgeons of Edinburgh, 2021, 19, e265-e269.	0.8	8

#	Article	IF	CITATIONS
19	Prone positioning improves oxygenation and lung recruitment in patients with SARS-CoV-2 acute respiratory distress syndrome; a single centre cohort study of 20 consecutive patients. BMC Research Notes, 2021, 14, 20.	0.6	19
20	Von Willebrand factor propeptide in severe coronavirus disease 2019 (COVIDâ€19): evidence of acute and sustained endothelial cell activation. British Journal of Haematology, 2021, 192, 714-719.	1.2	92
21	Repair of acute respiratory distress syndrome by stromal cell administration (REALIST) trial: A phase 1 trial. EClinicalMedicine, 2021, 41, 101167.	3.2	22
22	Human Umbilical Cord Mesenchymal Stromal Cells Attenuate Systemic Sepsis in Part by Enhancing Peritoneal Macrophage Bacterial Killing <i>via</i> Heme Oxygenase-1 Induction in Rats. Anesthesiology, 2020, 132, 140-154.	1.3	16
23	A new perspective in sepsis treatment: could RGD-dependent integrins be novel targets?. Drug Discovery Today, 2020, 25, 2317-2325.	3.2	12
24	A linear prognostic score based on the ratio of interleukin-6 to interleukin-10 predicts outcomes in COVID-19. EBioMedicine, 2020, 61, 103026.	2.7	77
25	COVID-19 in adults: test menu for hospital blood science laboratories. Irish Journal of Medical Science, 2020, 189, 1147-1152.	0.8	12
26	Prevention of pressure ulcers among individuals cared for in the prone position: lessons for the COVID-19 emergency. Journal of Wound Care, 2020, 29, 312-320.	0.5	86
27	Repair of Acute Respiratory Distress Syndrome by Stromal Cell Administration in COVID-19 (REALIST-COVID-19): A structured summary of a study protocol for a randomised, controlled trial. Trials, 2020, 21, 462.	0.7	24
28	Characterization of the Inflammatory Response to Severe COVID-19 Illness. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 812-821.	2.5	487
29	Initial Assessment of the Percutaneous Electrical Phrenic Nerve Stimulation System in Patients on Mechanical Ventilation. Critical Care Medicine, 2020, 48, e362-e370.	0.4	26
30	Restrictive compared with liberal red cell transfusion strategies in cardiac surgery: a meta-analysis. European Heart Journal, 2019, 40, 1081-1088.	1.0	85
31	Modulating the distribution and fate of exogenously delivered MSCs to enhance therapeutic potential: knowns and unknowns. Intensive Care Medicine Experimental, 2019, 7, 41.	0.9	35
32	Efficacy and safety of erythropoietin and iron therapy to reduce red blood cell transfusion in surgical patients: a systematic review and meta-analysis. Canadian Journal of Anaesthesia, 2019, 66, 716-731.	0.7	71
33	Outcomes of Patients Presenting with Mild Acute Respiratory Distress Syndrome. Anesthesiology, 2019, 130, 263-283.	1.3	28
34	EEG in the Pediatric Intensive Care Unit—An Irish Experience. Journal of Clinical Neurophysiology, 2019, Publish Ahead of Print, 130-134.	0.9	6
35	Extracellular Vesicles from Interferon-γ–primed Human Umbilical Cord Mesenchymal Stromal Cells Reduce <i>Escherichia coli</i> –induced Acute Lung Injury in Rats. Anesthesiology, 2019, 130, 778-790.	1.3	73
36	Ca 2+ Signaling and Barrier Function of Lung Microvascular Endothelial Cells are Modulated by Mesenchymal Stromal Cell Microparticles. FASEB Journal, 2019, 33, 845.6.	0.2	0

GERARD F CURLEY

#	Article	IF	CITATIONS
37	The surgical safety checklist and patient outcomes after surgery: a prospective observational cohort study, systematic review and meta-analysis. British Journal of Anaesthesia, 2018, 120, 146-155.	1.5	92
38	Mesenchymal stem cells enhance NOX2-dependent reactive oxygen species production and bacterial killing in macrophages during sepsis. European Respiratory Journal, 2018, 51, 1702021.	3.1	53
39	Inhibition of Vascular Endothelial Cell Leak Following Escherichia coli Attachment in an Experimental Model of Sepsis. Critical Care Medicine, 2018, 46, e805-e810.	0.4	20
40	Mesenchymal Stromal Cell Microparticles Enhance Lung Endothelial Barrier Through CD44 and the S1P/ceramide Rheostat. FASEB Journal, 2018, 32, 917.4.	0.2	0
41	Geo-economic variations in epidemiology, patterns of care, and outcomes in patients with acute respiratory distress syndrome: insights from the LUNG SAFE prospective cohort study. Lancet Respiratory Medicine,the, 2017, 5, 627-638.	5.2	93
42	The authors reply. Critical Care Medicine, 2017, 45, e737-e738.	0.4	0
43	Cryopreserved, Xeno-Free Human Umbilical Cord Mesenchymal Stromal Cells Reduce Lung Injury Severity and Bacterial Burden in Rodent Escherichia coli–Induced Acute Respiratory Distress Syndrome. Critical Care Medicine, 2017, 45, e202-e212.	0.4	67
44	The Swan-Ganz Catheter Remains a Critically Important Component of Monitoring in Cardiovascular Critical Care. Canadian Journal of Cardiology, 2017, 33, 142-147.	0.8	11
45	Update in Critical Care 2015. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 19-25.	2.5	7
46	The Goldilocks Principle, Carbon Dioxide, and Acute Respiratory Distress Syndrome. Anesthesiology, 2016, 124, 532-534.	1.3	2
47	Biotrauma and Ventilator-Induced LungÂlnjury. Chest, 2016, 150, 1109-1117.	0.4	176
48	Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries. British Journal of Anaesthesia, 2016, 117, 601-609.	1.5	400
49	What's new in cell therapies in ARDS?. Intensive Care Medicine, 2016, 42, 779-782.	3.9	6
50	Hypocapnia and Hypercapnia. , 2016, , 1527-1546.e8.		6
51	Therapeutic Efficacy of Human Mesenchymal Stromal Cells in the Repair of Established Ventilator-induced Lung Injury in the Rat. Anesthesiology, 2015, 122, 363-373.	1.3	57
52	Mesenchymal stromal cells are more effective than the MSC secretome in diminishing injury and enhancing recovery following ventilator-induced lung injury. Intensive Care Medicine Experimental, 2015, 3, 29.	0.9	64
53	Human mesenchymal stromal cells decrease the severity of acute lung injury induced by E. coli in the rat. Thorax, 2015, 70, 625-635.	2.7	163
54	Future therapies for ARDS. Intensive Care Medicine, 2015, 41, 322-326.	3.9	6

GERARD F CURLEY

#	Article	IF	CITATIONS
55	Stem cells for respiratory failure. Current Opinion in Critical Care, 2015, 21, 42-49.	1.6	8
56	Noninvasive respiratory support for acute respiratory failure-high flow nasal cannula oxygen or non-invasive ventilation?. Journal of Thoracic Disease, 2015, 7, 1092-7.	0.6	16
57	Pulmonary overexpression of inhibitor κBα decreases the severity of ventilator-induced lung injury in a rat model. British Journal of Anaesthesia, 2014, 113, 1046-1054.	1.5	9
58	Year in review 2013: Critical Care- respirology. Critical Care, 2014, 18, 577.	2.5	1
59	Transfusion Triggers for Guiding RBC Transfusion for Cardiovascular Surgery. Critical Care Medicine, 2014, 42, 2611-2624.	0.4	80
60	Clinical Trial Design in Prevention and Treatment of Acute Respiratory Distress Syndrome. Clinics in Chest Medicine, 2014, 35, 713-727.	0.8	1
61	Acidosis in the critically ill - balancing risks and benefits to optimize outcome. Critical Care, 2014, 18, 129.	2.5	15
62	Therapeutic Potential and Mechanisms of Action of Mesenchymal Stromal Cells for Acute Respiratory Distress Syndrome. Current Stem Cell Research and Therapy, 2014, 9, 319-329.	0.6	25
63	Inhibition of pulmonary nuclear factor kappa-B decreases the severity of acute Escherichia coli pneumonia but worsens prolonged pneumonia. Critical Care, 2013, 17, R82.	2.5	24
64	CrossTalk proposal: There is added benefit to providing permissive hypercapnia in the treatment of ARDS. Journal of Physiology, 2013, 591, 2763-2765.	1.3	22
65	Cell therapy demonstrates promise for acute respiratory distress syndrome - but which cell is best?. Stem Cell Research and Therapy, 2013, 4, 29.	2.4	6
66	Rebuttal from Gerard F. Curley, John G. Laffey and Brian P. Kavanagh. Journal of Physiology, 2013, 591, 2771-2772.	1.3	1
67	Effects of Intratracheal Mesenchymal Stromal Cell Therapy during Recovery and Resolution after Ventilator-induced Lung Injury. Anesthesiology, 2013, 118, 924-932.	1.3	92
68	Mesenchymal stem cells enhance recovery and repair following ventilator-induced lung injury in the rat. Thorax, 2012, 67, 496-501.	2.7	238
69	Hypercapnic acidosis attenuates ventilation-induced lung injury by a nuclear factor-l̂ºB–dependent mechanism. Critical Care Medicine, 2012, 40, 2622-2630.	0.4	77
70	Clinical review: Stem cell therapies for acute lung injury/acute respiratory distress syndrome - hope or hype?. Critical Care, 2012, 16, 205.	2.5	85
71	VEGF: Potential therapy for renal regeneration. F1000 Medicine Reports, 2012, 4, 2.	2.9	20
72	Lung stem cells - from an evolving understanding to a paradigm shift?. Stem Cell Research and Therapy, 2011, 2, 41.	2.4	7

GERARD F CURLEY

#	Article	IF	CITATIONS
73	Rapid sequence induction with rocuronium - a challenge to the gold standard. Critical Care, 2011, 15, 190.	2.5	11
74	Hypocapnia induced cerebral ischaemia during therapeutic hypothermia—Potential for harm?. Resuscitation, 2011, 82, 1122-1123.	1.3	2
75	Can 'permissive' hypercapnia modulate the severity of sepsis-induced ALI/ARDS?. Critical Care, 2011, 15, 212.	2.5	40
76	Hypocapnia and the injured brain: Evidence for harm. Critical Care Medicine, 2011, 39, 229-230.	0.4	9
77	Overexpression of pulmonary extracellular superoxide dismutase attenuates endotoxin-induced acute lung injury. Intensive Care Medicine, 2011, 37, 1680-7.	3.9	20
78	Evolution of the Inflammatory and Fibroproliferative Responses during Resolution and Repair after Ventilator-induced Lung Injury in the Rat. Anesthesiology, 2011, 115, 1022-1032.	1.3	36
79	Hypocapnia and the injured brain: More harm than benefit. Critical Care Medicine, 2010, 38, 1348-1359.	0.4	233
80	Hypercapnia and Acidosis in Sepsis. Anesthesiology, 2010, 112, 462-472.	1.3	83
81	Ipsilateral Transversus Abdominis Plane Block Provides Effective Analgesia After Appendectomy in Children. Anesthesia and Analgesia, 2010, 111, 998-1003.	1.1	110
82	Bench-to-bedside review: Carbon dioxide. Critical Care, 2010, 14, 220.	2.5	131
83	The Analgesic Efficacy of Transversus Abdominis Plane Block After Cesarean Delivery: A Randomized Controlled Trial. Anesthesia and Analgesia, 2008, 106, 186-191.	1.1	585
84	The Analgesic Efficacy of Transversus Abdominis Plane Block After Abdominal Surgery: A Prospective Randomized Controlled Trial. Anesthesia and Analgesia, 2007, 104, 193-197.	1.1	746
85	A comparison of tracheal intubation using the Airtraqïزا⁄or the Macintosh laryngoscope in routine airway management: a randomised, controlled clinical trial. Anaesthesia, 2006, 61, 1093-1099.	1.8	195