
Goutam De

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7310274/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plasmon Mediated Electron Transfer and Temperature Dependent Electronâ€Phonon Scattering in Gold Nanoparticles Embedded in Dielectric Films. ChemPhysChem, 2022, 23, .	1.0	5
2	Ultrafast Charge Delocalization Dynamics of Ambient Stable CsPbBr ₃ Nanocrystals Encapsulated in Polystyrene Fiber. Chemistry - A European Journal, 2021, 27, 683-691.	1.7	26
3	Efficient energy storage in mustard husk derived porous spherical carbon nanostructures. Materials Advances, 2021, 2, 7463-7472.	2.6	15
4	Hollow-porous nanospheres of ZnMn2O4 spinel: A high energy density cathode for rechargeable aqueous battery. Materials Chemistry and Physics, 2021, 263, 124373.	2.0	18
5	â€~Cotton-ball' shaped porous iron-nickel sulfide: A high-rate cathode for long-life aqueous rechargeable battery. Materials Research Bulletin, 2021, 140, 111307.	2.7	3
6	Alloy formation and composition partitioning of plasmonic-magnetic Auâ^'Fe nanoparticles embedded in sol-gel SiO2 films. Journal of Alloys and Compounds, 2021, 873, 159793.	2.8	3
7	Ni–rGO–zeolite nanocomposite: an efficient heterogeneous catalyst for one-pot synthesis of triazoles in water. Materials Advances, 2021, 2, 3042-3050.	2.6	14
8	Nanoparticle Induced Morphology Modulation in Spin Coated PS/PMMA Blend Thin Films. Langmuir, 2020, 36, 15270-15282.	1.6	14
9	Photocatalytic Evaluation of Anatase TiO ₂ Coating on Ceramic Tiles by Raman Spectroscopy. Transactions of the Indian Ceramic Society, 2020, 79, 13-17.	0.4	7
10	Development of nano-porous hydroxyapatite coated e-glass for potential bone-tissue engineering application: An in vitro approach. Materials Science and Engineering C, 2020, 111, 110764.	3.8	10
11	High figure of merit p-type transparent conducting thin film based on solution processed CuS-ZnS nanocomposite. Journal of Alloys and Compounds, 2019, 770, 813-822.	2.8	20
12	In Situ Synthesis of Mesoporous TiO ₂ Nanofibers Surface-Decorated with AuAg Alloy Nanoparticles Anchored by Heterojunction Exhibiting Enhanced Solar Active Photocatalysis. Langmuir, 2019, 35, 14364-14375.	1.6	21
13	How Does "Wormhole―Mesoporous γ-Alumina Matrix Direct the Morphology of Pt Nanocrystals?. Crystal Growth and Design, 2019, 19, 1494-1501.	1.4	3
14	Carbon@carbon double hollow spheres as efficient cathode host for high rate Li S battery. Materials Chemistry and Physics, 2019, 225, 309-315.	2.0	8
15	Polyionic Resin Supported Pd/Fe ₂ O ₃ Nanohybrids for Catalytic Hydrodehalogenation: Improved and Versatile Remediation for Toxic Pollutants. Industrial & Engineering Chemistry Research, 2019, 58, 2159-2169.	1.8	11
16	Electrospun ZrO ₂ nanofibers: precursor controlled mesopore ordering and evolution of garland-like nanocrystal arrays. Dalton Transactions, 2018, 47, 5789-5800.	1.6	8
17	Influence of C–S interactions on the electrochemical performance of –COOH functionalized MWCNT/S composites as lithium-sulfur battery cathode. Journal of Chemical Sciences, 2018, 130, 1.	0.7	8
18	Green Synthesis of Electrospun Porous Carbon Nanofibers from Sucrose and Doping of Ag Nanoparticle with Improved Electrical and Electrochemical Properties. ChemistrySelect, 2017, 2, 2265-2276.	0.7	13

#	Article	IF	CITATIONS
19	Understanding the Effect of Single Cysteine Mutations on Gold Nanoclusters as Studied by Spectroscopy and Density Functional Theory Modeling. Langmuir, 2017, 33, 12120-12129.	1.6	11
20	In Situ Mg/MgO-Embedded Mesoporous Carbon Derived from Magnesium 1,4-Benzenedicarboxylate Metal Organic Framework as Sustainable Li–S Battery Cathode Support. ACS Omega, 2017, 2, 6481-6491.	1.6	37
21	Stabilized Cu ₂ O Nanoparticles on Macroporous Polystyrene Resins [Cu ₂ O@ARF]: Improved and Reusable Heterogeneous Catalyst for On-Water Synthesis of Triazoles via Click Reaction. Industrial & Engineering Chemistry Research, 2017, 56, 11726-11733.	1.8	34
22	Hierarchical Ti _{1â^'x} Zr _x O _{2â^'y} nanocrystals with exposed high energy facets showing co-catalyst free solar light driven water splitting and improved light to energy conversion efficiency. Journal of Materials Chemistry A, 2017, 5, 17341-17351.	5.2	19
23	Carbon Dots from a Single Source Exhibiting Tunable Luminescent Colors through the Modification of Surface Functional Groups in ORMOSIL Films. Journal of Physical Chemistry C, 2017, 121, 28106-28116.	1.5	55
24	Ni nanoparticles on RGO as reusable heterogeneous catalyst: effect of Ni particle size and intermediate composite structures in C–S cross-coupling reaction. Beilstein Journal of Organic Chemistry, 2017, 13, 1796-1806.	1.3	22
25	Selective Cu ₄ Pd alloy nanoparticles anchoring on amine functionalized graphite nanosheets and their use as reusable catalysts for a C–C coupling reaction with the sacrificial role of Cu for Pd-regeneration. Dalton Transactions, 2016, 45, 12496-12506.	1.6	7
26	Carboxylic acid terminated, solution exfoliated graphite by organic acylation and its application in drug delivery. Journal of Chemical Sciences, 2016, 128, 1345-1354.	0.7	5
27	γâ€Alumina Nanorod/Reduced Graphene Oxide as Support for Poly(ethylenimine) to Capture Carbon Dioxide from Flue Gas. Energy Technology, 2016, 4, 1409-1419.	1.8	22
28	Electrospun TiO ₂ –rGO Composite Nanofibers with Ordered Mesopores by Molecular Level Assembly: A High Performance Anode Material for Lithiumâ€ion Batteries. Advanced Materials Interfaces, 2016, 3, 1600761.	1.9	37
29	Zeolite Crystals Embedded Nanotextured Coating with Hydrophobic Surface: An Innovation Toward Next Generation Solar Cover Glass for Efficient Lightâ€Harvesting. Advanced Materials Interfaces, 2016, 3, 1500848.	1.9	6
30	Extremely fast Au–Ag alloy–dealloy associated reversible plasmonic modifications in SiO ₂ films. Journal of Materials Chemistry C, 2016, 4, 3571-3580.	2.7	15
31	Fabrication of a cubic zirconia nanocoating on a titanium dental implant with excellent adhesion, hardness and biocompatibility. RSC Advances, 2016, 6, 59030-59038.	1.7	15
32	Porous SiO2 nanofiber grafted novel bioactive glass–ceramic coating: A structural scaffold for uniform apatite precipitation and oriented cell proliferation on inert implant. Materials Science and Engineering C, 2016, 62, 206-214.	3.8	25
33	Stable fluorescent CdS:Cu QDs and their hybridization with carbon polymer dots for white light emission. Journal of Materials Chemistry C, 2016, 4, 1665-1674.	2.7	10
34	Functionalized C@TiO ₂ hollow spherical architecture for multifunctional applications. Dalton Transactions, 2016, 45, 5111-5121.	1.6	16
35	Atomically precise and monolayer protected iridium clusters in solution. RSC Advances, 2016, 6, 26679-26688.	1.7	14
36	Electrochemical energy storage in montmorillonite K10 clay based composite as supercapacitor using ionic liquid electrolyte. Journal of Colloid and Interface Science, 2016, 464, 73-82.	5.0	55

#	Article	IF	CITATIONS
37	Structural evolution, photoinduced energy transfer in Au nanocluster–CdTe QD nanocomposites and amino acid sensing. Journal of Materials Chemistry C, 2016, 4, 486-496.	2.7	19
38	Hierarchically Designed Bioactive Glassy Nanocoatings for the Growth of Faster and Uniformly Dense Apatite. Journal of the American Ceramic Society, 2015, 98, 2428-2437.	1.9	8
39	Synthesis of amine functionalized graphite nanosheets and their water-soluble derivative for drug loading and controlled release. New Journal of Chemistry, 2015, 39, 2451-2458.	1.4	28
40	Low Temperature Fabrication of Photoactive Anatase TiO ₂ Coating and Phosphor from Water‑'Alcohol Dispersible Nanopowder. Industrial & Engineering Chemistry Research, 2015, 54, 928-937.	1.8	9
41	Attenuation of the Early Events of α-Synuclein Aggregation: A Fluorescence Correlation Spectroscopy and Laser Scanning Microscopy Study in the Presence of Surface-Coated Fe ₃ O ₄ Nanoparticles. Langmuir, 2015, 31, 1469-1478.	1.6	40
42	Size Evolution of Protein-Protected Gold Clusters in Solution: A Combined SAXS–MS Investigation. Journal of Physical Chemistry C, 2015, 119, 2148-2157.	1.5	29
43	Cu ₂ O Nanoparticles Anchored on Amine-Functionalized Graphite Nanosheet: A Potential Reusable Catalyst. Langmuir, 2015, 31, 5210-5219.	1.6	61
44	Design of mesoporous alumina–ceria films on glass: Compositional tuning leads to mesoscopic transformations. Microporous and Mesoporous Materials, 2015, 203, 151-162.	2.2	2
45	Carbon nanodot–ORMOSIL fluorescent paint and films. Journal of Materials Chemistry C, 2015, 3, 714-719.	2.7	13
46	Mesoporous Alumina Films: Effect of Oligomer Formation toward Mesostructural Ordering. Langmuir, 2014, 30, 15292-15300.	1.6	8
47	Single-step in-situ synthesis and optical properties of ZnSe nanostructured dielectric nanocomposites. Journal of Applied Physics, 2014, 115, 134309.	1.1	9
48	TiO2 nanoparticles doped SiO2 films with ordered mesopore channels: a catalytic nanoreactor. Dalton Transactions, 2014, 43, 5221.	1.6	14
49	Pd/Cu bimetallic nanoparticles embedded in macroporous ion-exchange resins: an excellent heterogeneous catalyst for the Sonogashira reaction. Journal of Materials Chemistry A, 2014, 2, 3986.	5.2	79
50	Electrospun anatase TiO ₂ nanofibers with ordered mesoporosity. Journal of Materials Chemistry A, 2014, 2, 19029-19035.	5.2	36
51	Reduced graphene oxide supported Ni nanoparticles: a high performance reusable heterogeneous catalyst for Kumada–Corriu cross-coupling reactions. RSC Advances, 2014, 4, 35442.	1.7	30
52	Pd–Ni alloy nanoparticle doped mesoporous SiO ₂ film: the sacrificial role of Ni to resist Pd-oxidation in the C–C coupling reaction. Dalton Transactions, 2014, 43, 13325.	1.6	43
53	Crystal structure tailoring of Au–Cu alloy NPs using the embedding film matrix as template. CrystEngComm, 2014, 16, 56-63.	1.3	12
54	Durable superhydrophobic ZnO–SiO ₂ films: a new approach to enhance the abrasion resistant property of trimethylsilyl functionalized SiO ₂ nanoparticles on glass. RSC Advances, 2014, 4, 54989-54997.	1.7	21

#	Article	IF	CITATIONS
55	Stable Ni Nanoparticle–Reduced Graphene Oxide Composites for the Reduction of Highly Toxic Aqueous Cr(VI) at Room Temperature. Langmuir, 2014, 30, 3209-3216.	1.6	143
56	Boat-like Au nanoparticles embedded mesoporous Î ³ -Al2O3 films: an efficient SERS substrate. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	11
57	Fabrication of Cd0.5Zn0.5S:Cu QDs incorporated organically modified SiO2 films showing entire visible colour emission with high quantum yield. Journal of Materials Chemistry C, 2013, 1, 4816.	2.7	13
58	Synthesis of Equimolar Pd–Ru Alloy Nanoparticles Incorporated Mesoporous Alumina Films: A High Performance Reusable Film Catalyst. Industrial & Engineering Chemistry Research, 2013, 52, 15817-15823.	1.8	24
59	CdS nanoparticles incorporated onion-like mesoporous silica films: Ageing-induced large stokes shifted intense PL emission. Optical Materials, 2013, 35, 2604-2612.	1.7	11
60	Wavelength Selective Antireflective Coatings on Plastics with Hydrophobic Surfaces. Industrial & Engineering Chemistry Research, 2013, 52, 7737-7745.	1.8	12
61	Highly ordered cubic mesoporous electrospun SiO2 nanofibers. Chemical Communications, 2013, 49, 6322.	2.2	38
62	Surface Coating Rescues Proteins from Magnetite Nanoparticle Induced Damage. Particle and Particle Systems Characterization, 2013, 30, 683-694.	1.2	4
63	Controlled and stepwise generation of Cu2O, Cu2O@Cu and Cu nanoparticles inside the transparent alumina films and their catalytic activity. RSC Advances, 2012, 2, 9606.	1.7	28
64	A facile synthesis of cubic (Im3̄m) alumina films on glass with potential catalytic activity. Chemical Communications, 2012, 48, 3333.	2.2	22
65	Covalently functionalized reduced graphene oxide by organically modified silica: a facile synthesis of electrically conducting black coatings on glass. Journal of Materials Chemistry, 2012, 22, 24690.	6.7	37
66	Magic sized ZnS quantum dots as a highly sensitive and selective fluorescence sensor probe for Ag ⁺ ions. Analyst, The, 2012, 137, 765-772.	1.7	69
67	Host-Mediated Synthesis of Cobalt Aluminate/γ-Alumina Nanoflakes: A Dispersible Composite Pigment with High Catalytic Activities. ACS Applied Materials & Interfaces, 2012, 4, 228-234.	4.0	28
68	High Raman Enhancing Shape-Tunable Ag Nanoplates in Alumina: A Reliable and Efficient SERS Technique. ACS Applied Materials & Interfaces, 2012, 4, 3330-3334.	4.0	57
69	Chemically ordered face-centred tetragonal Fe–Pt nanoparticles embedded SiO2 films. Bulletin of Materials Science, 2012, 35, 1079-1085.	0.8	3
70	A Facile Synthesis of PEG-Coated Magnetite (Fe ₃ O ₄) Nanoparticles and Their Prevention of the Reduction of Cytochrome C. ACS Applied Materials & Interfaces, 2012, 4, 142-149.	4.0	200
71	Facile synthesis of hexagonally ordered mesoporous aluminum oxide thin films with high catalytic activity. Microporous and Mesoporous Materials, 2012, 158, 187-194.	2.2	27
72	Au@MO2 (M= Ti, Zr, Si) Films by Ex Situ Incorporation Approach. Science of Advanced Materials, 2012, 4, 663-668.	0.1	2

#	Article	IF	CITATIONS
73	Transformation of Pd → PdH0.7 nanoparticles inside mesoporous Zr-modified SiO2 films in ambient conditions. Journal of Materials Chemistry, 2011, 21, 11482.	6.7	15
74	Spontaneous generation and shape conversion of silver nanoparticles in alumina sol, and shaped silver nanoparticle incorporated alumina films. Journal of Materials Chemistry, 2011, 21, 6072.	6.7	27
75	Superhydrophobic Films on Glass Surface Derived from Trimethylsilanized Silica Gel Nanoparticles. ACS Applied Materials & Interfaces, 2011, 3, 3440-3447.	4.0	74
76	Stable CdS QDs with intense broadband photoluminescence and high quantum yields. Optical Materials, 2011, 34, 6-11.	1.7	9
77	Cu x Ni1â^'x alloy nanoparticles embedded SiO2 films: synthesis and structure. Journal of Nanoparticle Research, 2011, 13, 321-329.	0.8	10
78	Pd nanoparticles supported mesoporous γ-Al2O3 film as a reusable catalyst for reduction of toxic CrVI to CrIII in aqueous solution. Applied Catalysis A: General, 2011, 396, 34-39.	2.2	108
79	Improved photoluminescence properties of sol-gel derived Er3+ doped silica films. Journal of Applied Physics, 2010, 108, 113116.	1.1	6
80	Cu–Au–Ag Alloy Nanoparticles Incorporated Silica Films Using a New Three-Layer Deposition Technique. Journal of Nanoscience and Nanotechnology, 2010, 10, 775-783.	0.9	9
81	Agâ^'TiO ₂ Nanoparticle Codoped SiO ₂ Films on ZrO ₂ Barrier-Coated Glass Substrates with Antibacterial Activity in Ambient Condition. ACS Applied Materials & Interfaces, 2010, 2, 2540-2546.	4.0	53
82	Nanorods assembly of mesoporous boehmite film on glass: an efficient catalyst for permanganate reduction to MnO2 nanoparticles. Journal of Materials Chemistry, 2010, 20, 3890.	6.7	27
83	Anisotropic Gold Nanoparticle Doped Mesoporous Boehmite Films and Their Use as Reusable Catalysts in Electron Transfer Reactions. Langmuir, 2010, 26, 12177-12184.	1.6	85
84	Au nanoparticles doped ZrTiO4 films and hydrogen gas induced Au-plasmon shifting. Journal of Materials Chemistry, 2010, 20, 9081.	6.7	8
85	Reversible transformations of silver oxide and metallic silver nanoparticles inside SiO2 films. Materials Research Bulletin, 2009, 44, 355-359.	2.7	34
86	Au@Pd Coreâ^'Shell Nanoparticle Incorporated Alumina Sols and Coatings: Transformation of Au@Pd to Auâ^'Pd Alloy Nanoparticles. Journal of Physical Chemistry C, 2009, 113, 9101-9107.	1.5	47
87	Inorganicâ^'Organic Nanocomposite Based Hard Coatings on Plastics Using In Situ Generated Nano-SiO ₂ Bonded with â‰iSi—O — Si—PEO Hybrid Network. Industrial & Engineering Chemistry Research, 2009, 48, 4326-4333.	1.8	40
88	Synthesis of Thick Mesoporous γ-Alumina Films, Loading of Pt Nanoparticles, and Use of the Composite Film as a Reusable Catalyst. ACS Applied Materials & Interfaces, 2009, 1, 833-840.	4.0	69
89	Metal nanoparticle doped coloured coatings on glasses and plastics through tuning of surface plasmon band position. Bulletin of Materials Science, 2008, 31, 479-485.	0.8	13
90	Tuning of Ag-SPR band position in refractive index controlled inorganic-organic hybrid SiO2-PEO-TiO2 films. Journal of Chemical Sciences, 2008, 120, 565-572.	0.7	13

#	Article	IF	CITATIONS
91	In situ Generation of Au Nanoparticles in UV-curable Refractive Index Controlled SiO2â^'TiO2â^'PEO Hybrid Films. Journal of Physical Chemistry C, 2008, 112, 10378-10384.	1.5	18
92	Au nanoparticles in alumina sols and coatings. Journal of Materials Chemistry, 2008, 18, 2816.	6.7	22
93	Formation of Au–Pt bimetallic nanoparticles in a two-layer SiO2 films doped with Au and Pt, respectively, through interlayer diffusion. Physical Chemistry Chemical Physics, 2008, 10, 4062.	1.3	17
94	Refractive Index Controlled Plasmon Tuning of Au Nanoparticles in SiO ₂ -ZrO ₂ Film Matrices. Journal of Nanoscience and Nanotechnology, 2008, 8, 3868-3876.	0.9	6
95	Refractive Index Controlled Plasmon Tuning of Au Nanoparticles in SiO2-ZrO2 Film Matrices. Journal of Nanoscience and Nanotechnology, 2008, 8, 3868-3876.	0.9	1
96	Refractive index controlled plasmon tuning of Au nanoparticles in SiO2-ZrO2 film matrices. Journal of Nanoscience and Nanotechnology, 2008, 8, 3868-76.	0.9	0
97	Synthesis of Au–Ag Alloy Nanoparticles with Au/Ag Compositional Control in SiO2 Film Matrix. Journal of Nanoscience and Nanotechnology, 2007, 7, 1994-1999.	0.9	9
98	Nanocrystalline mesoporous palladium activated tin oxide thin films as room-temperature hydrogen gas sensors. Chemical Communications, 2007, , 1840-1842.	2.2	32
99	Oriented Au–Cu nanoalloy particle incorporated SiO2films using a new layer by layer deposition technique. Journal of Materials Chemistry, 2007, 17, 493-498.	6.7	23
100	Coarsening of Ag nanoparticles in SiO2–PEO hybrid film matrix by UV light. Journal of Materials Chemistry, 2006, 16, 3193-3198.	6.7	21
101	Nonlinear Optical Absorption and Switching Properties of Gold Nanoparticle Doped SiO ₂ –TiO ₂ Sol–Gel Films. Journal of Nanoscience and Nanotechnology, 2006, 6, 1990-1994.	0.9	34
102	A New Approach for the Synthesis of Auâ^'Ag Alloy Nanoparticle Incorporated SiO2 Films. Chemistry of Materials, 2005, 17, 6161-6166.	3.2	54
103	Au–Pt alloy nanocrystals incorporated in silica films. Journal of Materials Chemistry, 2005, 15, 891-894.	6.7	58
104	Synthesis of Au nanoparticle doped SiO2–TiO2 films: tuning of Au surface plasmon band position through controlling the refractive index. Journal of Materials Chemistry, 2005, 15, 3278.	6.7	79
105	Nonlinear optical properties and surface-plasmon enhanced optical limiting in Ag–Cu nanoclusters co-doped in SiO2 Sol-Gel films. Journal of Applied Physics, 2004, 96, 6717-6723.	1.1	82
106	Two-Dimensional Au and Auâ^'Cu Alloy Nanocrystals with Orientation in (111) Plane Embedded in Glassy Silica Films‡. Journal of Physical Chemistry B, 2003, 107, 13597-13600.	1.2	34
107	Preparation of uniformly dispersed copper nanocluster doped silica glasses by the sol–gel process. Journal of Materials Chemistry, 2001, 11, 3326-3332.	6.7	40
108	Silver-nanocluster-doped inorganic–organic hybrid coatings on polycarbonate substrates. Journal of Non-Crystalline Solids, 2001, 288, 221-225.	1.5	25

#	Article	IF	CITATIONS
109	Gold-Nanocluster-Doped Inorganicâ^'Organic Hybrid Coatings on Polycarbonate and Isolation of Shaped Gold Microcrystals from the Coating Sol. Chemistry of Materials, 2001, 13, 4239-4246.	3.2	27
110	Dense silica microspheres from organic and inorganic acid hydrolysis of TEOS. Journal of Non-Crystalline Solids, 2000, 272, 119-126.	1.5	113
111	Hydrolysis–condensation reactions of TEOS in the presence of acetic acid leading to the generation of glass-like silica microspheres in solution at room temperature. Journal of Materials Chemistry, 2000, 10, 2289-2293.	6.7	104
112	Sol-Gel Synthesis of Metal Nanoclusters-Silica Composite Films. Journal of Sol-Gel Science and Technology, 1998, 11, 289-298.	1.1	33
113	Copper-ruby monoliths by the sol-gel process. Journal of Non-Crystalline Solids, 1996, 201, 250-255.	1.5	33
114	Solid-Phase Thermal Reactions of Chromium(III) and Copper(II) Complexes Containing Pentadentate Ethylenediaminetetraacetate and 1,2-Propanediaminetetraacetate Ions. Bulletin of the Chemical Society of Japan, 1987, 60, 3444-3446.	2.0	2
115	Some Unusual Phase Transitions of Nickel(II) Diamine Complexes. Bulletin of the Chemical Society of Japan, 1987, 60, 2701-2703.	2.0	7
116	Cis-to-Trans Isomerization of Bis(diamine)bis(isothiocyanato)chromium(III) Thiocyanate in the Solid State. Bulletin of the Chemical Society of Japan, 1987, 60, 2871-2874.	2.0	3
117	Phase transition and decomposition of A2MX4 [A = (C2H5)4N; M = Co(II), Ni(II) AND Cu(II); X = Cl and Br] in the solid state. Thermochimica Acta, 1986, 108, 97-103.	1.2	15
118	Solid state thermal phase transition of cadmium(II) diamine complexes. Thermochimica Acta, 1986, 105, 35-40.	1.2	3
119	Synthesis, characterisation and solid state thermal behaviour of nickel(II) diamine complexes. Transition Metal Chemistry, 1986, 11, 81-86.	0.7	17
120	Thermal Investigations of 1,4-Butanediamine Complexes of Nickel(II) in the Solid Phase. Bulletin of the Chemical Society of Japan, 1985, 58, 715-720.	2.0	18
121	Thermal Studies of 1,2-Propanediamine Complexes of Zinc(II) and Cadmium(II) in the Solid Phase. Bulletin of the Chemical Society of Japan, 1985, 58, 3606-3612.	2.0	3
122	The twotrans-[NiL2(NCS)2] (L =N, N-dimethyl-1,3-propanediamine) isomers in the solid state and in solution. Transition Metal Chemistry, 1985, 10, 476-479.	0.7	19
123	Solid state thermal phase transitions and decompositions of nickel (II) diamine complexes. Thermochimica Acta, 1985, 92, 759-762.	1.2	7
124	Thermally induced decomposition and phase transition of diamine complexes of cadmium(II) thiocyanate. Thermochimica Acta, 1985, 91, 151-158.	1.2	5
125	Thermal investigations of cadmium(II) diamine complexes in the solid phase. Thermochimica Acta, 1984, 77, 1-11.	1.2	8
126	Thermal investigation of diamine complexes of Zn(II) in the solid state. Thermochimica Acta, 1983, 69, 349-359.	1.2	10

#	Article	IF	CITATIONS
127	Thermal Investigation of Nickel(II) Diamine Complexes in Solid State. Bulletin of the Chemical Society of Japan, 1983, 56, 3145-3151.	2.0	33