
Stephen G Yeager

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7309255/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Equatorial Pacific Cold Tongue Bias in CESM1 and Its Influence on ENSO Forecasts. Journal of Climate, 2022, 35, 3261-3277.	1.2	8
2	Role of Sea‣urface Salinity in Simulating Historical Decadal Variations of Atlantic Meridional Overturning Circulation in a Coupled Climate Model. Geophysical Research Letters, 2022, 49, .	1.5	5
3	Subseasonal Earth System Prediction with CESM2. Weather and Forecasting, 2022, 37, 797-815.	0.5	18
4	On the Intermittent Occurrence of Openâ€Ocean Polynyas in a Multiâ€Century Highâ€Resolution Preindustrial Earth System Model Simulation. Journal of Geophysical Research: Oceans, 2022, 127, .	1.0	2
5	The Impact of Horizontal Resolution on Projected Sea‣evel Rise Along US East Continental Shelf With the Community Earth System Model. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	7
6	The effects of bias, drift, and trends in calculating anomalies for evaluating skill of seasonal-to-decadal initialized climate predictions. Climate Dynamics, 2022, 59, 3373-3389.	1.7	8
7	Skilful decadal-scale prediction of fish habitat and distribution shifts. Nature Communications, 2022, 13, 2660.	5.8	13
8	Revisiting the Causal Connection between the Great Salinity Anomaly of the 1970s and the Shutdown of Labrador Sea Deep Convection. Journal of Climate, 2021, 34, 675-696.	1.2	9
9	Seasonal to multi-year soil moisture drought forecasting. Npj Climate and Atmospheric Science, 2021, 4, .	2.6	30
10	Predictable Variations of the Carbon Sinks and Atmospheric CO ₂ Growth in a Multiâ€Model Framework. Geophysical Research Letters, 2021, 48, e2020GL090695.	1.5	17
11	Labrador Sea subsurface density as a precursor of multidecadal variability in the North Atlantic: a multi-model study. Earth System Dynamics, 2021, 12, 419-438.	2.7	13
12	Impacts of Arctic Sea Ice on Cold Season Atmospheric Variability and Trends Estimated from Observations and a Multi-model Large Ensemble. Journal of Climate, 2021, , 1-64.	1.2	11
13	Bringing the Future Into Focus: Benefits and Challenges of High-Resolution Global Climate Change Simulations. Computing in Science and Engineering, 2021, 23, 34-41.	1.2	1
14	An outsized role for the Labrador Sea in the multidecadal variability of the Atlantic overturning circulation. Science Advances, 2021, 7, eabh3592.	4.7	41
15	Quantification of the Arctic Sea Iceâ€Driven Atmospheric Circulation Variability in Coordinated Large Ensemble Simulations. Geophysical Research Letters, 2020, 47, e2019GL085397.	1.5	29
16	Atlantic Multidecadal Variability and Associated Climate Impacts Initiated by Ocean Thermohaline Dynamics. Journal of Climate, 2020, 33, 1317-1334.	1.2	20
17	Sensitivity of the Atlantic Meridional Overturning Circulation to Model Resolution in CMIP6 HighResMIP Simulations and Implications for Future Changes. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002014.	1.3	59
18	The abyssal origins of North Atlantic decadal predictability. Climate Dynamics, 2020, 55, 2253-2271.	1.7	25

STEPHEN G YEAGER

#	Article	IF	CITATIONS
19	North Atlantic climate far more predictable than models imply. Nature, 2020, 583, 796-800.	13.7	158
20	Amplified seasonal cycle in hydroclimate over the Amazon river basin and its plume region. Nature Communications, 2020, 11, 4390.	5.8	29
21	Potential Predictability of Net Primary Production in the Ocean. Global Biogeochemical Cycles, 2020, 34, e2020GB006531.	1.9	22
22	Decadal predictability of North Atlantic blocking and the NAO. Npj Climate and Atmospheric Science, 2020, 3, .	2.6	60
23	Current and Emerging Developments in Subseasonal to Decadal Prediction. Bulletin of the American Meteorological Society, 2020, 101, E869-E896.	1.7	116
24	Skillful multiyear predictions of ocean acidification in the California Current System. Nature Communications, 2020, 11, 2166.	5.8	17
25	An Unprecedented Set of Highâ€Resolution Earth System Simulations for Understanding Multiscale Interactions in Climate Variability and Change. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002298.	1.3	104
26	The Value of Initialization on Decadal Timescales: State-Dependent Predictability in the CESM Decadal Prediction Large Ensemble. Journal of Climate, 2020, 33, 7353-7370.	1.2	1
27	Impact of horizontal resolution on global ocean–sea ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2). Geoscientific Model Development, 2020, 13, 4595-4637.	1.3	75
28	Optimizing high-resolution Community Earth System Model on a heterogeneous many-core supercomputing platform. Geoscientific Model Development, 2020, 13, 4809-4829.	1.3	30
29	Impact of Coherent Ocean Stratification on AMOC Reconstruction by Coupled Data Assimilation with a Biased Model. Journal of Climate, 2020, 33, 7319-7334.	1.2	3
30	Decadal predictability of late winter precipitation in western Europe through an ocean–jet stream connection. Nature Geoscience, 2019, 12, 613-619.	5.4	48
31	Robust and Nonrobust Aspects of Atlantic Meridional Overturning Circulation Variability and Mechanisms in the Community Earth System Model. Journal of Climate, 2019, 32, 7349-7368.	1.2	10
32	Predicting near-term variability in ocean carbon uptake. Earth System Dynamics, 2019, 10, 45-57.	2.7	38
33	Variability in the Northern North Atlantic and Arctic Oceans Across the Last Two Millennia: A Review. Paleoceanography and Paleoclimatology, 2019, 34, 1399-1436.	1.3	53
34	Robust skill of decadal climate predictions. Npj Climate and Atmospheric Science, 2019, 2, .	2.6	136
35	A Review of the Role of the Atlantic Meridional Overturning Circulation in Atlantic Multidecadal Variability and Associated Climate Impacts. Reviews of Geophysics, 2019, 57, 316-375.	9.0	298
36	Challenges and Prospects in Ocean Circulation Models. Frontiers in Marine Science, 2019, 6, .	1.2	133

STEPHEN G YEAGER

#	Article	IF	CITATIONS
37	Modulation of Arctic Sea Ice Loss by Atmospheric Teleconnections from Atlantic Multidecadal Variability. Journal of Climate, 2019, 32, 1419-1441.	1.2	32
38	High predictability of terrestrial carbon fluxes from an initialized decadal prediction system. Environmental Research Letters, 2019, 14, 124074.	2.2	19
39	Global Meridional Overturning Circulation Inferred From a Dataâ€Constrained Ocean & Seaâ€ice Model. Geophysical Research Letters, 2019, 46, 1521-1530.	1.5	19
40	Impacts of the Atlantic Multidecadal Variability on North American Summer Climate and Heat Waves. Journal of Climate, 2018, 31, 3679-3700.	1.2	57
41	Low-Frequency North Atlantic Climate Variability in the Community Earth System Model Large Ensemble. Journal of Climate, 2018, 31, 787-813.	1.2	86
42	Key Role of Internal Ocean Dynamics in Atlantic Multidecadal Variability During the Last Half Century. Geophysical Research Letters, 2018, 45, 13,449.	1.5	35
43	Seasonal Cycle and Annual Reversal of the Somali Current in an Eddyâ€Resolving Global Ocean Model. Journal of Geophysical Research: Oceans, 2018, 123, 6562-6580.	1.0	18
44	Predicted Chance That Global Warming Will Temporarily Exceed 1.5°C. Geophysical Research Letters, 2018, 45, 11,895.	1.5	31
45	JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do). Ocean Modelling, 2018, 130, 79-139.	1.0	357
46	Recent Progress in Understanding and Predicting Atlantic Decadal Climate Variability. Current Climate Change Reports, 2017, 3, 112-127.	2.8	115
47	Assessing the Climate Impacts of the Observed Atlantic Multidecadal Variability Using the GFDL CM2.1 and NCAR CESM1 Global Coupled Models. Journal of Climate, 2017, 30, 2785-2810.	1.2	170
48	A 2 Year Forecast for a 60–80% Chance of La Niña in 2017–2018. Geophysical Research Letters, 2017, 44, 11,624.	1.5	37
49	Atmospheric Conditions Associated with Labrador Sea Deep Convection: New Insights from a Case Study of the 2006/07 and 2007/08 Winters. Journal of Climate, 2016, 29, 5281-5297.	1.2	14
50	Comment on "The Atlantic Multidecadal Oscillation without a role for ocean circulationâ€: Science, 2016, 352, 1527-1527.	6.0	136
51	Predicted slowdown in the rate of Atlantic sea ice loss. Geophysical Research Letters, 2015, 42, 10,704.	1.5	113
52	Topographic Coupling of the Atlantic Overturning and Gyre Circulations. Journal of Physical Oceanography, 2015, 45, 1258-1284.	0.7	68
53	An assessment of Southern Ocean water masses and sea ice during 1988–2007 in a suite of interannual CORE-II simulations. Ocean Modelling, 2015, 94, 67-94.	1.0	68
54	Stochastic Atmospheric Forcing as a Cause of Greenland Climate Transitions. Journal of Climate, 2015, 28, 7741-7763.	1.2	62

STEPHEN G YEAGER

#	Article	IF	CITATIONS
55	An evaluation of experimental decadal predictions using CCSM4. Climate Dynamics, 2015, 44, 907-923.	1.7	34
56	Decadal Climate Prediction: An Update from the Trenches. Bulletin of the American Meteorological Society, 2014, 95, 243-267.	1.7	454
57	The Origins of Late-Twentieth-Century Variations in the Large-Scale North Atlantic Circulation. Journal of Climate, 2014, 27, 3222-3247.	1.2	118
58	The Atlantic Meridional Heat Transport at 26.5°N and Its Relationship with the MOC in the RAPID Array and the GFDL and NCAR Coupled Models. Journal of Climate, 2013, 26, 4335-4356.	1.2	67
59	Sensitivity of Atlantic Meridional Overturning Circulation Variability to Parameterized Nordic Sea Overflows in CCSM4. Journal of Climate, 2012, 25, 2077-2103.	1.2	55
60	A Decadal Prediction Case Study: Late Twentieth-Century North Atlantic Ocean Heat Content. Journal of Climate, 2012, 25, 5173-5189.	1.2	212
61	What caused the significant increase in Atlantic Ocean heat content since the mid-20th century?. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	62
62	Patterns of Indian Ocean sea-level change in a warming climate. Nature Geoscience, 2010, 3, 546-550.	5.4	203
63	Coordinated Ocean-ice Reference Experiments (COREs). Ocean Modelling, 2009, 26, 1-46.	1.0	573
64	The connection between Labrador Sea buoyancy loss, deep western boundary current strength, and Gulf Stream path in an ocean circulation model. Ocean Modelling, 2009, 30, 207-224.	1.0	22