Daniel Lopez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7309064/publications.pdf

Version: 2024-02-01

59	1,192	16	33
papers	citations	h-index	g-index
62	62	62	1613
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum. Nature Immunology, 2005, 6, 689-697.	7.0	420
2	T cell receptor V beta gene usage in a human alloreactive response. Shared structural features among HLA-B27-specific T cell clones Journal of Experimental Medicine, 1990, 171, 1189-1204.	4.2	90
3	Multiple proteases process viral antigens for presentation by MHC class I molecules to CD8+ T lymphocytes. Molecular Immunology, 2002, 39, 235-247.	1.0	49
4	Generation of MHC Class I Peptide Antigens by Protein Processing in the Secretory Route by Furin. Traffic, 2000, 1, 641-651.	1.3	43
5	A Long N-terminal-extended Nested Set of Abundant and Antigenic Major Histocompatibility Complex Class I Natural Ligands from HIV Envelope Protein. Journal of Biological Chemistry, 2006, 281, 6358-6365.	1.6	36
6	Sequential Cleavage by Metallopeptidases and Proteasomes Is Involved in Processing HIV-1 ENV Epitope for Endogenous MHC Class I Antigen Presentation. Journal of Immunology, 2000, 164, 5070-5077.	0.4	32
7	Concerted In Vitro Trimming of Viral HLA-B27-Restricted Ligands by Human ERAP1 and ERAP2 Aminopeptidases. PLoS ONE, 2013, 8, e79596.	1.1	25
8	N-ras couples antigen receptor signaling to Eomesodermin and to functional CD8+ T cell memory but not to effector differentiation. Journal of Experimental Medicine, 2013, 210, 1463-1479.	4.2	24
9	HLA-Bâ^—27 subtype specificity determines targeting and viral evolution of a hepatitis C virus-specific CD8+ T cell epitope. Journal of Hepatology, 2014, 60, 22-29.	1.8	24
10	Multiple, Non-conserved, Internal Viral Ligands Naturally Presented by HLA-B27 in Human Respiratory Syncytial Virus-infected Cells. Molecular and Cellular Proteomics, 2010, 9, 1533-1539.	2.5	23
11	HIV Envelope Protein Inhibits MHC Class I Presentation of a Cytomegalovirus Protective Epitope. Journal of Immunology, 2001, 167, 4238-4244.	0.4	22
12	Natural HLA-B*2705 Protein Ligands with Glutamine as Anchor Motif. Journal of Biological Chemistry, 2013, 288, 10882-10889.	1.6	21
13	Cutting Edge: H-2Ld Class I Molecule Protects an HIV N-Extended Epitope from In Vitro Trimming by Endoplasmic Reticulum Aminopeptidase Associated with Antigen Processing. Journal of Immunology, 2010, 184, 3351-3355.	0.4	19
14	CD69 Does Not Affect the Extent of T Cell Priming. PLoS ONE, 2012, 7, e48593.	1.1	19
15	Multiple Viral Ligands Naturally Presented by Different Class I Molecules in Transporter Antigen Processing-Deficient Vaccinia Virus-Infected Cells. Journal of Virology, 2012, 86, 527-541.	1.5	18
16	Identification and Analysis of Unstructured, Linear B-Cell Epitopes in SARS-CoV-2 Virion Proteins for Vaccine Development. Vaccines, 2020, 8, 397.	2.1	17
17	An Endogenous HIV Envelope-derived Peptide without the Terminal NH3+ Group Anchor Is Physiologically Presented by Major Histocompatibility Complex Class I Molecules. Journal of Biological Chemistry, 2004, 279, 1151-1160.	1.6	16
18	Caspases in Virus-Infected Cells Contribute to Recognition by CD8+ T Lymphocytes. Journal of Immunology, 2010, 184, 5193-5199.	0.4	16

#	Article	IF	CITATIONS
19	Structure of HLA-B27-specific T cell epitopes. Antigen presentation in B2703 is limited mostly to a subset of the antigenic determinants on B2705. European Journal of Immunology, 1994, 24, 2548-2555.	1.6	15
20	Exogenous, TAPâ€independent lysosomal presentation of a respiratory syncytial virus CTL epitope. Immunology and Cell Biology, 2012, 90, 978-982.	1.0	15
21	Modulation of Natural HLA-B*27:05 Ligandome by Ankylosing Spondylitis-associated Endoplasmic Reticulum Aminopeptidase 2 (ERAP2). Molecular and Cellular Proteomics, 2020, 19, 994-1004.	2.5	15
22	Role of Metalloproteases in Vaccinia Virus Epitope Processing for Transporter Associated with Antigen Processing (TAP)-independent Human Leukocyte Antigen (HLA)-B7 Class I Antigen Presentation*. Journal of Biological Chemistry, 2012, 287, 9990-10000.	1.6	14
23	ICOS deficiency hampers the homeostasis, development and function of NK cells. PLoS ONE, 2019, 14, e0219449.	1.1	14
24	Allele-dependent Processing Pathways Generate the Endogenous Human Leukocyte Antigen (HLA) Class I Peptide Repertoire in Transporters Associated with Antigen Processing (TAP)-deficient Cells. Journal of Biological Chemistry, 2011, 286, 38054-38059.	1.6	13
25	A Viral, Transporter Associated with Antigen Processing (TAP)-independent, High Affinity Ligand with Alternative Interactions Endogenously Presented by the Nonclassical Human Leukocyte Antigen E Class I Molecule. Journal of Biological Chemistry, 2012, 287, 34895-34903.	1.6	13
26	The Viral Transcription Group Determines the HLA Class I Cellular Immune Response Against Human Respiratory Syncytial Virus*. Molecular and Cellular Proteomics, 2015, 14, 893-904.	2.5	13
27	Human respiratory syncytial virus infects and induces activation markers in mouse B lymphocytes. Immunology and Cell Biology, 2009, 87, 344-350.	1.0	12
28	Predicted impact of the viral mutational landscape on the cytotoxic response against SARS-CoV-2. PLoS Computational Biology, 2022, 18, e1009726.	1.5	11
29	Structural and Nonstructural Viral Proteins Are Targets of T-Helper Immune Response against Human Respiratory Syncytial Virus. Molecular and Cellular Proteomics, 2016, 15, 2141-2151.	2.5	10
30	Relevance of viral context and diversity of antigen-processing routes for respiratory syncytial virus cytotoxic T-lymphocyte epitopes. Journal of General Virology, 2008, 89, 2194-2203.	1.3	9
31	Diversity of Natural Self-Derived Ligands Presented by Different HLA Class I Molecules in Transporter Antigen Processing-Deficient Cells. PLoS ONE, 2013, 8, e59118.	1.1	8
32	CD69 Targeting Enhances Anti-vaccinia Virus Immunity. Journal of Virology, 2019, 93, .	1.5	8
33	Proteomics Analysis Reveals That Structural Proteins of the Virion Core and Involved in Gene Expression Are the Main Source for HLA Class II Ligands in Vaccinia Virus-Infected Cells. Journal of Proteome Research, 2019, 18, 900-911.	1.8	8
34	T cell receptor diversity in alloreactive responses against HLA-B27 (B*2705) is limited by multiple-level restrictions in both $\hat{l}\pm$ and \hat{l}^2 chains. European Journal of Immunology, 1995, 25, 2479-2485.	1.6	7
35	Antigen Processing of a Short Viral Antigen by Proteasomes. Journal of Biological Chemistry, 2006, 281, 30315-30318.	1.6	7
36	Unusual viral ligand with alternative interactions is presented by HLAâ€Cw4 in human respiratory syncytial virusâ€infected cells. Immunology and Cell Biology, 2011, 89, 558-565.	1.0	7

#	Article	IF	CITATIONS
37	Natural Spleen Cell Ligandome in Transporter Antigen Processing-Deficient Mice. Journal of Proteome Research, 2019, 18, 3512-3520.	1.8	7
38	Complex antigen presentation pathway for an HLA-A*0201-restricted epitope from Chikungunya 6K protein. PLoS Neglected Tropical Diseases, 2017, 11, e0006036.	1.3	7
39	Concerted Antigen Processing of a Short Viral Antigen by Human Caspase-5 and -10. Journal of Biological Chemistry, 2011, 286, 16910-16913.	1.6	6
40	Vaccination and the TAP-independent antigen processing pathways. Expert Review of Vaccines, 2013, 12, 1077-1083.	2.0	6
41	Computational characterization of the peptidome in transporter associated with antigen processing (TAP)-deficient cells. PLoS ONE, 2019, 14, e0210583.	1.1	6
42	T cell allorecognition and endogenous HLA-B27-bound peptides in a cell line with defective HLA-B27-restricted antigen presentation. European Journal of Immunology, 1994, 24, 1194-1199.	1.6	5
43	TAP-independent human histocompatibility complex-Cw1 antigen processing of an HIV envelope protein conserved peptide. Aids, 2011, 25, 265-269.	1.0	5
44	Predicted Epitope Abundance Supports Vaccine-Induced Cytotoxic Protection Against SARS-CoV-2 Variants of Concern. Frontiers in Immunology, 2021, 12, 732693.	2.2	5
45	TLR4-Independent upregulation of activation markers in mouse B lymphocytes infected by HRSV. Molecular Immunology, 2010, 47, 1802-1807.	1.0	4
46	Immunoproteomic analysis of a Chikungunya poxvirus-based vaccine reveals high HLA class II immunoprevalence. PLoS Neglected Tropical Diseases, 2019, 13, e0007547.	1.3	4
47	Modified Vaccinia Virus Ankara as a Viral Vector for Vaccine Candidates against Chikungunya Virus. Biomedicines, 2021, 9, 1122.	1.4	4
48	Cross-Recognition of SARS-CoV-2 B-Cell Epitopes with Other Betacoronavirus Nucleoproteins. International Journal of Molecular Sciences, 2022, 23, 2977.	1.8	4
49	Prediction of Conserved HLA Class I and Class II Epitopes from SARS-CoV-2 Licensed Vaccines Supports T-Cell Cross-Protection against SARS-CoV-1. Biomedicines, 2022, 10, 1622.	1.4	4
50	Predicted HLA Class I and Class II Epitopes From Licensed Vaccines Are Largely Conserved in New SARS-CoV-2 Omicron Variant of Concern. Frontiers in Immunology, 2022, 13, 832889.	2.2	3
51	Immunoproteomic Lessons for Human Respiratory Syncytial Virus Vaccine Design. Journal of Clinical Medicine, 2019, 8, 486.	1.0	2
52	The HLA-DP peptide repertoire from human respiratory syncytial virus is focused on major structural proteins with the exception of the viral polymerase. Journal of Proteomics, 2020, 221, 103759.	1.2	2
53	Acid Stripping after Infection Improves the Detection of Viral HLA Class I Natural Ligands Identified by Mass Spectrometry. International Journal of Molecular Sciences, 2021, 22, 10503.	1.8	2
54	A Common Minimal Motif for the Ligands of HLA-B*27 Class I Molecules. PLoS ONE, 2014, 9, e106772.	1.1	1

#	Article	IF	CITATIONS
55	Mitoxantrone Shows In Vitro, but Not In Vivo Antiviral Activity against Human Respiratory Syncytial Virus. Biomedicines, 2021, 9, 1176.	1.4	1
56	MHC Class I Ligands and Epitopes in HRSV Infection. , 0, , .		0
57	Reply to Clinical and Immunological Remarks about TAP Deficiency. Journal of Biological Chemistry, 2012, 287, 27048.	1.6	0
58	N-ras couples antigen receptor signalling to eomesodermin and to functional CD8+ T-cell memory but not to effector differentiation. Journal of Cell Biology, 2013, 201, 2017OIA34.	2.3	0
59	Abundance, Betweenness Centrality, Hydrophobicity, and Isoelectric Points Are Relevant Factors in the Processing of Parental Proteins of the HLA Class II Ligandome. Journal of Proteome Research, 2022, 21, 164-171.	1.8	0