
Samuel Shephard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/730859/publications.pdf Version: 2024-02-01

SAMILEL SHEDHADD

#	Article	IF	CITATIONS
1	Fishing impact and environmental status in <scp>E</scp> uropean seas: a diagnosis from stock assessments and ecosystem indicators. Fish and Fisheries, 2016, 17, 31-55.	5.3	78
2	Surveillance indicators and their use in implementation of the Marine Strategy Framework Directive. ICES Journal of Marine Science, 2015, 72, 2269-2277.	2.5	56
3	Interpreting the large fish indicator for the Celtic Sea. ICES Journal of Marine Science, 2011, 68, 1963-1972.	2.5	54
4	Size-selective fishing drives species composition in the Celtic Sea. ICES Journal of Marine Science, 2012, 69, 223-234.	2.5	46
5	Juvenile life history of NE Atlantic orange roughy from otolith stable isotopes. Deep-Sea Research Part I: Oceanographic Research Papers, 2007, 54, 1221-1230.	1.4	44
6	Aquaculture and environmental drivers of salmon lice infestation and body condition in sea trout. Aquaculture Environment Interactions, 2016, 8, 597-610.	1.8	41
7	Why the size structure of marine communities can require decades to recover from fishing. Marine Ecology - Progress Series, 2013, 484, 155-171.	1.9	38
8	Making progress towards integration of existing sampling activities to establish Joint Monitoring Programmes in support of the MSFD. Marine Policy, 2015, 59, 105-111.	3.2	33
9	Fishing for MSY: using "pretty good yield―ranges without impairing recruitment. ICES Journal of Marine Science, 2017, 74, 525-534.	2.5	31
10	Spatial Heterogeneity in Fishing Creates de facto Refugia for Endangered Celtic Sea Elasmobranchs. PLoS ONE, 2012, 7, e49307.	2.5	27
11	Assessing the state of pelagic fish communities within an ecosystem approach and the European Marine Strategy Framework Directive. ICES Journal of Marine Science, 2014, 71, 1572-1585.	2.5	27
12	Inland fish stock assessment: Applying dataâ€poor methods from marine systems. Fisheries Management and Ecology, 2018, 25, 240-252.	2.0	26
13	Quantifying the contribution of sea lice from aquaculture to declining annual returns in a wild Atlantic salmon population. Aquaculture Environment Interactions, 2017, 9, 181-192.	1.8	21
14	Length-based indicators and reference points for assessing data-poor stocks of diadromous trout Salmo trutta. Fisheries Research, 2018, 199, 36-43.	1.7	20
15	Temporal variation in sea trout Salmo trutta life history traits in the Erriff River, western Ireland. Aquaculture Environment Interactions, 2016, 8, 675-689.	1.8	20
16	Hydrodredge: Reducing the negative impacts of scallop dredging. Fisheries Research, 2009, 95, 206-209.	1.7	18
17	Thermal, trophic and metabolic life histories of inaccessible fishes revealed from stableâ€isotope analyses: a case study using orange roughy <i>Hoplostethus atlanticus</i> . Journal of Fish Biology, 2013, 83, 1613-1636.	1.6	18
18	Scavenging on trawled seabeds can modify trophic size structure of bottom-dwelling fish. ICES Journal of Marine Science, 2014, 71, 398-405.	2.5	18

SAMUEL SHEPHARD

#	Article	IF	CITATIONS
19	Wild Atlantic salmon exposed to sea lice from aquaculture show reduced marine survival and modified response to ocean climate. ICES Journal of Marine Science, 2021, 78, 368-376.	2.5	18
20	Modelling recovery of Celtic Sea demersal fish community size-structure. Fisheries Research, 2013, 140, 91-95.	1.7	16
21	Difference in Channel Catfish Growth among Mississippi Stream Basins. Transactions of the American Fisheries Society, 2006, 135, 1224-1229.	1.4	15
22	Fishing and environment drive spatial heterogeneity in Celtic Sea fish community size structure. ICES Journal of Marine Science, 2011, 68, 2106-2113.	2.5	15
23	Identifying marine pelagic ecosystem management objectives and indicators. Marine Policy, 2015, 55, 23-32.	3.2	15
24	Pioneer macrophyte species engineer fine-scale physical heterogeneity in a shallow lowland river. Ecological Engineering, 2017, 102, 451-458.	3.6	15
25	Seasonal distribution of orange roughy (Hoplostethus atlanticus) on the Porcupine Bank west of Ireland. Fisheries Research, 2006, 77, 17-23.	1.7	14
26	Establishing stakeholder connections for management of the Irish orange roughy fishery. ICES Journal of Marine Science, 2007, 64, 841-845.	2.5	13
27	Channel Catfish Maturation in Mississippi Streams. North American Journal of Fisheries Management, 2005, 25, 1467-1475.	1.0	12
28	Fine-scale population structure in a deep-sea teleost (orange roughy, Hoplostethus atlanticus). Deep-Sea Research Part I: Oceanographic Research Papers, 2011, 58, 627-636.	1.4	12
29	River reaches with impaired riparian tree cover and channel morphology have reduced thermal resilience. Ecohydrology, 2017, 10, e1890.	2.4	12
30	Parallel decadal variability of inferred water temperatures for Northern and Southern Hemisphere intermediate water masses. Geophysical Research Letters, 2014, 41, 1232-1237.	4.0	11
31	Temporal stability and rates of postâ€depositional change in geochemical signatures of brown trout <i>Salmo trutta</i> scales. Journal of Fish Biology, 2016, 89, 1704-1719.	1.6	11
32	Nonâ€native species and lake warming negatively affect Arctic charSalvelinus alpinusabundance; deep thermal refugia facilitate coâ€existence. Journal of Fish Biology, 2018, 94, 5-16.	1.6	11
33	Dome-shaped selectivity in LB-SPR: Length-Based assessment of data-limited inland fish stocks sampled with gillnets. Fisheries Research, 2020, 229, 105574.	1.7	10
34	Combining empirical indicators and expert knowledge for surveillance of data-limited sea trout stocks. Ecological Indicators, 2019, 104, 96-106.	6.3	9
35	Potential climate change impacts on Arctic char Salvelinus alpinus L. in Ireland. Fisheries Management and Ecology, 2019, 26, 527-539.	2.0	9
36	Informing CITES Parties: Strengthening scienceâ€based decisionâ€making when listing marine species. Fish and Fisheries, 2020, 21, 13-31.	5.3	9

SAMUEL SHEPHARD

#	Article	IF	CITATIONS
37	Angling records track the near extirpation of angel shark Squatina squatina from two Irish hotspots. Endangered Species Research, 2019, 38, 153-158.	2.4	9
38	Densityâ€independent growth of floodplain river channel catfish <i>Ictalurus punctatus</i> . Journal of Fish Biology, 2009, 74, 2409-2414.	1.6	8
39	Estimating biomass, fishing mortality, and "total allowable discards―for surveyed non-target fish. ICES Journal of Marine Science, 2015, 72, 458-466.	2.5	8
40	A river vegetation quality metric in the ecoâ€hydromorphology philosophy. River Research and Applications, 2018, 34, 207-217.	1.7	8
41	Biogeography and fish community structure in Irish estuaries. Regional Studies in Marine Science, 2019, 32, 100836.	0.7	8
42	The efficacy of riparian tree cover as a climate change adaptation tool is affected by hydromorphological alterations. Hydrological Processes, 2020, 34, 2433.	2.6	7
43	From Amazon Catfish to Mekong Money Fish: Sizeâ€based Assessment of Data‣imited Commercial Inland Fisheries. Fisheries, 2021, 46, 170-187.	0.8	7
44	Estimating sea trout (Salmo trutta L.) growth from scale chemistry profiles: an objective approach using LA-ICPMS. Fisheries Research, 2019, 211, 69-80.	1.7	6
45	River modification reduces climate resilience of brown trout (<i>Salmo trutta</i>) populations in Ireland. Fisheries Management and Ecology, 2019, 26, 512-526.	2.0	6
46	Moving from multiple pass depletion to single pass timed electrofishing for fish community assessment in wadeable streams. Fisheries Research, 2018, 198, 99-108.	1.7	4
47	Lengthâ€based assessment of larval lamprey population structure at differing spatial scales. Aquatic Conservation: Marine and Freshwater Ecosystems, 2019, 29, 39-46.	2.0	4
48	Coexistence of pike Esox lucius and brown trout Salmo trutta in Irish lakes. Journal of Fish Biology, 2018, 93, 1005-1011.	1.6	3
49	Shifts in diet of an apex predator following the colonisation of an invasive fish. Hydrobiologia, 2019, 837, 205-218.	2.0	3
50	Salmonid Conservation in an Invaded Lake: Changing Outcomes of Predator Removal with Introduction of Nonnative Prey. Transactions of the American Fisheries Society, 2019, 148, 219-231.	1.4	3
51	Plants as agents of hydromorphological recovery in lowland streams. Geomorphology, 2022, 400, 108090.	2.6	3
52	System-specific salmon louse infestation thresholds for salmon farms to minimize impacts on wild sea trout populations. Aquaculture Environment Interactions, 2021, 13, 377-388.	1.8	2
53	Size Selection of Channel Catfish in Slat Traps of Different Interslat Space Widths. Transactions of the American Fisheries Society, 2004, 133, 197-203.	1.4	1
54	Benthivorous fish may go hungry on trawled seabed. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2240-2240.	2.6	1

SAMUEL SHEPHARD

#	Article	IF	CITATIONS
55	Evaluating management options for two fisheries that conflict through predator–prey interactions of target species. Ecological Modelling, 2019, 410, 108740.	2.5	1
56	The spawning location of vulnerable ferox trout (Salmo trutta L.) in the Lough Corrib and Lough Mask catchments, Western Ireland. Journal of Fish Biology, 2021, 98, 485-497.	1.6	1
57	Move and you're dead: commercial trawl fisheries select for fish that don't move far. ICES Journal of Marine Science, 0, , .	2.5	1
58	Analytical approaches for addressing the variation in back-calculated age-length relationships for fish. Tropical Life Sciences Research, 2009, 20, 79-87.	0.9	0
59	Body condition of returning Atlantic salmon <i>Salmo salar</i> L. correlates with scale <scp>Î¹³C</scp> and <scp>Î¹⁵N</scp> content deposited at the last marine foraging location. Journal of Fish Biology, 2021, , .	1.6	0