
Vittoria Locato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7308570/publications.pdf Version: 2024-02-01

VITTOPIALOCATO

#	Article	IF	CITATIONS
1	A Multifactorial Regulation of Glutathione Metabolism behind Salt Tolerance in Rice. Antioxidants, 2022, 11, 1114.	2.2	9
2	Comparison between In Vitro Chemical and Ex Vivo Biological Assays to Evaluate Antioxidant Capacity of Botanical Extracts. Antioxidants, 2021, 10, 1136.	2.2	11
3	African baobab (Adansonia digitata) fruit as promising source of procyanidins. European Food Research and Technology, 2020, 246, 297-306.	1.6	7
4	Redox Balance-DDR-miRNA Triangle: Relevance in Genome Stability and Stress Responses in Plants. Frontiers in Plant Science, 2019, 10, 989.	1.7	27
5	Analysis of Redox Relationships in the Plant Cell Cycle: Determination of Ascorbate, Glutathione, and Poly(ADPribose)polymerase (PARP) in Plant Cell Cultures. Methods in Molecular Biology, 2019, 1990, 165-181.	0.4	7
6	Salt tolerance in indica rice cell cultures depends on a fine tuning of ROS signalling and homeostasis. PLoS ONE, 2019, 14, e0213986.	1.1	27
7	Genetic buffering of cyclic <scp>AMP</scp> in <i>Arabidopsis thaliana</i> compromises the plant immune response triggered by an avirulent strain of <i>Pseudomonas syringae</i> pv. <i>tomato</i> . Plant Journal, 2019, 98, 590-606.	2.8	32
8	Effects of ionizing radiation on bio-active plant extracts useful for preventing oxidative damages. Natural Product Research, 2019, 33, 1106-1114.	1.0	17
9	Plant Cell Cultures as Model Systems to Study Programmed Cell Death. Methods in Molecular Biology, 2018, 1743, 173-186.	0.4	6
10	Programmed Cell Death in Plants: An Overview. Methods in Molecular Biology, 2018, 1743, 1-8.	0.4	92
11	ROS and redox balance as multifaceted players of cross-tolerance: epigenetic and retrograde control of gene expression. Journal of Experimental Botany, 2018, 69, 3373-3391.	2.4	83
12	H2O2 Signature and Innate Antioxidative Profile Make the Difference Between Sensitivity and Tolerance to Salt in Rice Cells. Frontiers in Plant Science, 2018, 9, 1549.	1.7	13
13	Environmental conditions influence the biochemical properties of the fruiting bodies of Tuber magnatum Pico. Scientific Reports, 2018, 8, 7243.	1.6	27
14	Glutathione as a Key Player in Plant Abiotic Stress Responses and Tolerance. , 2017, , 127-145.		6
15	Effect of Inulin on Proteome Changes Induced by Pathogenic Lipopolysaccharide in Human Colon. PLoS ONE, 2017, 12, e0169481.	1.1	15
16	Constitutive cyclic GMP accumulation in Arabidopsis thaliana compromises systemic acquired resistance induced by an avirulent pathogen by modulating local signals. Scientific Reports, 2016, 6, 36423.	1.6	27
17	Nitric Oxide and Reactive Oxygen Species in PCD Signaling. Advances in Botanical Research, 2016, , 165-192.	0.5	28
18	Role of redox homeostasis in thermo-tolerance under a climate change scenario: Fig. 1 Annals of Botany, 2015, 116, 487-496.	1.4	62

VITTORIA LOCATO

#	Article	IF	CITATIONS
19	Fructan biosynthesis and degradation as part of plant metabolism controlling sugar fluxes during durum wheat kernel maturation. Frontiers in Plant Science, 2015, 6, 89.	1.7	39
20	Over-expression of Trx <i>o</i> 1 increases the viability of tobacco BY-2 cells under H ₂ O ₂ treatment. Annals of Botany, 2015, 116, 571-582.	1.4	28
21	Low concentrations of the toxin ophiobolin A lead to an arrest of the cell cycle and alter the intracellular partitioning of glutathione between the nuclei and cytoplasm. Journal of Experimental Botany, 2015, 66, 2991-3000.	2.4	22
22	Antioxidant Activity of Inulin and Its Role in the Prevention of Human Colonic Muscle Cell Impairment Induced by Lipopolysaccharide Mucosal Exposure. PLoS ONE, 2014, 9, e98031.	1.1	66
23	Fructan Metabolism in Developing Wheat (Triticum aestivum L.) Kernels. Plant and Cell Physiology, 2013, 54, 2047-2057.	1.5	49
24	S-Nitrosylation of Ascorbate Peroxidase Is Part of Programmed Cell Death Signaling in Tobacco Bright Yellow-2 Cells. Plant Physiology, 2013, 163, 1766-1775.	2.3	139
25	Strategies to increase vitamin C in plants: from plant defense perspective to food biofortification. Frontiers in Plant Science, 2013, 4, 152.	1.7	77
26	Ophiobolin A, a sesterterpenoid fungal phytotoxin, displays higher in vitro growth-inhibitory effects in mammalian than in plant cells and displays in vivo antitumor activity. International Journal of Oncology, 2013, 43, 575-585.	1.4	33
27	A Regulatory Role of NAD Redox Status on Flavin Cofactor Homeostasis inS. cerevisiaeMitochondria. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-16.	1.9	14
28	The soluble proteome of tobacco Bright Yellow-2 cells undergoing H2O2-induced programmed cell death. Journal of Experimental Botany, 2012, 63, 3137-3155.	2.4	15
29	Redox regulation in plant programmed cell death. Plant, Cell and Environment, 2012, 35, 234-244.	2.8	196
30	Calactoneâ€Î³â€lactoneâ€dependent ascorbate biosynthesis alters wheat kernel maturation. Plant Biology, 2012, 14, 652-658.	1.8	31
31	Redox homeostasis in plants. The challenge of living with endogenous oxygen production. Respiratory Physiology and Neurobiology, 2010, 173, S13-S19.	0.7	98
32	Response to UV-C radiation in topo I-deficient carrot cells with low ascorbate levels. Journal of Experimental Botany, 2010, 61, 575-585.	2.4	33
33	A 2D segmentation algorithm for the analisys of TBY-2 cells. , 2010, , .		0
34	Pyridine Nucleotide Cycling and Control of Intracellular Redox State in Relation to Poly (ADP-Ribose) Polymerase Activity and Nuclear Localization of Glutathione during Exponential Growth of Arabidopsis Cells in Culture. Molecular Plant, 2009, 2, 442-456.	3.9	81
35	The occurrence of riboflavin kinase and FAD synthetase ensures FAD synthesis in tobacco mitochondria and maintenance of cellular redox status. FEBS Journal, 2009, 276, 219-231.	2.2	48
36	Different involvement of the mitochondrial, plastidial and cytosolic ascorbate–glutathione redox enzymes in heat shock responses. Physiologia Plantarum, 2009, 135, 296-306.	2.6	57

#	Article	IF	CITATIONS
37	Production of reactive species and modulation of antioxidant network in response to heat shock: a critical balance for cell fate. Plant, Cell and Environment, 2008, 31, 1606-1619.	2.8	125
38	Analysis of Redox Relationships in the Plant Cell Cycle: Determinations of Ascorbate, Glutathione and Poly (ADPribose) Polymerase (PARP) in Plant Cell Cultures. Methods in Molecular Biology, 2008, 476, 193-209.	0.4	14
39	Reduced expression of top1Â gene induces programmed cell death and alters ascorbate metabolism in Daucus carota cultured cells. Journal of Experimental Botany, 2006, 57, 1667-1676.	2.4	16