Xin-Hua Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7308534/publications.pdf

Version: 2024-02-01

516215 433756 36 988 16 31 citations g-index h-index papers 38 38 38 928 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Testosterone Regulates PDE5 Expression and in vivo Responsiveness to Tadalafil in Rat Corpus Cavernosum. European Urology, 2005, 47, 409-416.	0.9	165
2	Testosterone Restores Diabetesâ€Induced Erectile Dysfunction and Sildenafil Responsiveness in Two Distinct Animal Models of Chemical Diabetes. Journal of Sexual Medicine, 2006, 3, 253-266.	0.3	124
3	ORIGINAL RESEARCH—BASIC SCIENCE: Effect of Chronic Tadalafil Administration on Penile Hypoxia Induced by Cavernous Neurotomy in the Rat. Journal of Sexual Medicine, 2006, 3, 419-431.	0.3	118
4	A Novel Regulatory Mechanism of Smooth Muscle \hat{l}_{\pm} -Actin Expression by NRG-1/circACTA2/miR-548f-5p Axis. Circulation Research, 2017, 121, 628-635.	2.0	118
5	Comparative Effectiveness of Oral Drug Therapies for Lower Urinary Tract Symptoms due to Benign Prostatic Hyperplasia: A Systematic Review and Network Meta-Analysis. PLoS ONE, 2014, 9, e107593.	1.1	44
6	Update on Corpus Cavernosum Smooth Muscle Contractile Pathways in Erectile Function: A Role for Testosterone?. Journal of Sexual Medicine, 2011, 8, 1865-1879.	0.3	37
7	Testosterone regulates smooth muscle contractile pathways in the rat prostate: emphasis on PDE5 signaling. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E243-E253.	1.8	35
8	The sphingosineâ€1â€phosphate pathway is upregulated in response to partial urethral obstruction in male rats and activates RhoA/Rhoâ€kinase signalling. BJU International, 2010, 106, 562-571.	1.3	24
9	Upregulation of Phosphodiesterase type 5 in the Hyperplastic Prostate. Scientific Reports, 2015, 5, 17888.	1.6	24
10	Identification and functional activity of matrix-remodeling associated 5 (MXRA5) in benign hyperplastic prostate. Aging, 2020, 12, 8605-8621.	1.4	23
11	Systematic review and meta-analysis on phosphodiesterase 5 inhibitors and \hat{l}_{\pm} -adrenoceptor antagonists used alone or combined for treatment of LUTS due to BPH. Asian Journal of Andrology, 2015, 17, 1022.	0.8	20
12	NELL2 modulates cell proliferation and apoptosis via ERK pathway in the development of benign prostatic hyperplasia. Clinical Science, 2021, 135, 1591-1608.	1.8	19
13	Testosterone regulates erectile function and Vcsa1 expression in the corpora of rats. Molecular and Cellular Endocrinology, 2009, 303, 67-73.	1.6	18
14	<i>In vitro</i> and <i>in vivo</i> relaxation of urinary bladder smooth muscle by the selective myosin II inhibitor, blebbistatin. BJU International, 2011, 107, 310-317.	1.3	17
15	Smooth muscle myosin expression, isoform composition, and functional activities in rat corpus cavernosum altered by the streptozotocin-induced type 1 diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E32-E42.	1.8	17
16	Upregulation of Oxytocin Receptor in the Hyperplastic Prostate. Frontiers in Endocrinology, 2018, 9, 403.	1.5	17
17	In Vitro and In Vivo Relaxation of Corpus Cavernosum Smooth Muscle by the Selective Myosin II Inhibitor, Blebbistatin. Journal of Sexual Medicine, 2009, 6, 2661-2671.	0.3	15
18	Blebbistain, a Myosin II Inhibitor, as a Novel Strategy to Regulate Detrusor Contractility in a Rat Model of Partial Bladder Outlet Obstruction. PLoS ONE, 2011, 6, e25958.	1.1	14

#	Article	IF	Citations
19	Upregulated Interleukin 21 Receptor Enhances Proliferation and Epithelial-Mesenchymal Transition Process in Benign Prostatic Hyperplasia. Frontiers in Endocrinology, 2019, 10, 4.	1.5	14
20	Upregulated bone morphogenetic protein 5 enhances proliferation and epithelial–mesenchymal transition process in benign prostatic hyperplasia via BMP/Smad signaling pathway. Prostate, 2021, 81, 1435-1449.	1.2	14
21	Regional heterogeneity in expression of the sphingosine-1-phosphate pathway in the female rat lower urinary tract. American Journal of Obstetrics and Gynecology, 2009, 200, 576.e1-576.e7.	0.7	12
22	The expression and functional activities of smooth muscle myosin and nonâ€muscle myosin isoforms in rat prostate. Journal of Cellular and Molecular Medicine, 2018, 22, 576-588.	1.6	12
23	Rho-Kinase, a Common Final Path of Various Contractile Bladder and Ureter Stimuli. Handbook of Experimental Pharmacology, 2011, , 543-568.	0.9	11
24	Smoothened inhibition leads to decreased cell proliferation and suppressed tissue fibrosis in the development of benign prostatic hyperplasia. Cell Death Discovery, 2021, 7, 115.	2.0	11
25	Testosterone regulates the expression and functional activity of sphingosineâ€1â€phosphate receptors in the rat corpus cavernosum. Journal of Cellular and Molecular Medicine, 2018, 22, 1507-1516.	1.6	10
26	Glucose-regulated protein 78 modulates cell growth, epithelial $\hat{a} \in$ "mesenchymal transition, and oxidative stress in the hyperplastic prostate. Cell Death and Disease, 2022, 13, 78.	2.7	10
27	Blebbistatin modulates prostatic cell growth and contrapctility through myosin II signaling. Clinical Science, 2018, 132, 2189-2205.	1.8	9
28	M2a macrophage can rescue proliferation and gene expression of benign prostate hyperplasia epithelial and stroma cells from insulinâ€ike growth factor 1 knockdown. Prostate, 2021, 81, 530-542.	1.2	9
29	Changes in the expression and function of the PDE5 pathway in the obstructed urinary bladder. Journal of Cellular and Molecular Medicine, 2020, 24, 13181-13195.	1.6	6
30	Changes in the expression and functional activities of Myosin II isoforms in human hyperplastic prostate. Clinical Science, 2021, 135, 167-183.	1.8	5
31	Rat model of erectile dysfunction caused by cavernous nerve ablation. Chinese Medical Journal, 2002, 115, 1179-82.	0.9	5
32	Testosterone regulates myosin II isoforms expression and functional activity in the rat prostate. Prostate, 2018, 78, 1283-1298.	1.2	4
33	The Role of Heat Shock Protein 70 Subfamily in the Hyperplastic Prostate: From Molecular Mechanisms to Therapeutic Opportunities. Cells, 2022, 11, 2052.	1.8	4
34	Alterations in the phosphodiesterase type 5 pathway and oxidative stress correlate with erectile function in spontaneously hypertensive rats. Journal of Cellular and Molecular Medicine, 2020, 24, 14280-14292.	1.6	2
35	Testosterone regulates the expression and functional activity of sphingosine-1-phosphate receptors in the rat corpus cavernosum., 2018, 22, 1507.		1
36	The Prostate-Associated Gene 4 (PAGE4) Could Play a Role in the Development of Benign Prostatic Hyperplasia under Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-22.	1.9	0

3