
Anthony McGregor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7307759/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The spatial layout of doorways and environmental boundaries shape the content of event memories. Cognition, 2022, 225, 105091.	2.2	2
2	Geometric Module. , 2022, , 2936-2940.		0
3	The effects of spatial stability and cue type on spatial learning: Implications for theories of parallel memory systems. Cognition, 2021, 214, 104802.	2.2	8
4	Uncertainty and predictiveness modulate attention in human predictive learning Journal of Experimental Psychology: General, 2021, 150, 1177-1202.	2.1	4
5	Distinct and combined responses to environmental geometry and features in a working-memory reorientation task in rats and chicks. Scientific Reports, 2020, 10, 7508.	3.3	8
6	Spontaneous object-location memory based on environmental geometry is impaired by both hippocampal and dorsolateral striatal lesions. Brain and Neuroscience Advances, 2020, 4, 239821282097259.	3.4	5
7	En route to delineating hippocampal roles in spatial learning. Behavioural Brain Research, 2019, 369, 111936.	2.2	7
8	Walking through doorways differentially affects recall and familiarity. British Journal of Psychology, 2019, 110, 173-184.	2.3	5
9	The response strategy and the place strategy in a plusâ€maze have different sensitivities to devaluation of expected outcome. Hippocampus, 2018, 28, 484-496.	1.9	21
10	Dorsolateral striatal lesions impair navigation based on landmark-goal vectors but facilitate spatial learning based on a "cognitive map". Learning and Memory, 2015, 22, 179-91.	1.3	7
11	Dorsolateral striatal lesions impair navigation based on landmark-goal vectors but facilitate spatial learning based on a "cognitive map― Learning and Memory, 2015, 22, 179-191.	1.3	29
12	Revaluation of geometric cues reduces landmark discrimination via within-compound associations. Learning and Behavior, 2014, 42, 330-336.	1.0	5
13	Transfer of spatial search between environments in human adults and young children (<i>Homo) Tj ETQq1 1 0.7 Psychobiology, 2014, 56, 421-434.</i>	84314 rgB 1.6	T /Overlock 14
14	Overshadowing of geometry learning by discrete landmarks in the water maze: Effects of relative salience and relative validity of competing cues Journal of Experimental Psychology, 2013, 39, 126-139.	1.7	28
15	Clever crows or unbalanced birds?. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E336.	7.1	12
16	Within-compound associations explain potentiation and failure to overshadow learning based on geometry by discrete landmarks Journal of Experimental Psychology, 2013, 39, 259-272.	1.7	13
17	Spontaneous object recognition memory is maintained following transformation of global geometric properties Journal of Experimental Psychology, 2013, 39, 93-98.	1.7	10
18	Gender-Based Navigation Stereotype Improves Men's Search for a Hidden Goal. Sex Roles, 2012, 67, 682-695.	2.4	14

#	Article	IF	CITATIONS
19	Absence of overshadowing between a landmark and geometric cues in a distinctively shaped environment: A test of Miller and Shettleworth (2007) Journal of Experimental Psychology, 2009, 35, 357-370.	1.7	26
20	The discrimination of natural movement by budgerigars (Melopsittacus undulates) and pigeons (Columba livia) Journal of Experimental Psychology, 2007, 33, 371-380.	1.7	8
21	Impaired processing of local geometric features during navigation in a water maze following hippocampal lesions in rats Behavioral Neuroscience, 2007, 121, 1258-1271.	1.2	32
22	Revisiting places passed: Sensitization of exploratory activity in rats with hippocampal lesions. Quarterly Journal of Experimental Psychology, 2007, 60, 625-634.	1.1	19
23	Context- but not familiarity-dependent forms of object recognition are impaired following excitotoxic hippocampal lesions in rats Behavioral Neuroscience, 2007, 121, 218-223.	1.2	105
24	Potentiation, overshadowing, and blocking of spatial learning based on the shape of the environment Journal of Experimental Psychology, 2006, 32, 201-214.	1.7	104
25	Further evidence that rats rely on local rather than global spatial information to locate a hidden goal: Reply to Cheng and Gallistel (2005) Journal of Experimental Psychology, 2006, 32, 314-321.	1.7	41
26	Spatial learning based on the shape of the environment is influenced by properties of the objects forming the shape Journal of Experimental Psychology, 2006, 32, 44-59.	1.7	67
27	Blind imitation in pigeons, Columba livia. Animal Behaviour, 2006, 72, 287-296.	1.9	21
28	Transfer of Spatial Behaviour Controlled by a Landmark Array with a Distinctive Shape. Quarterly Journal of Experimental Psychology Section B: Comparative and Physiological Psychology, 2005, 58, 69-91.	2.8	26
29	Absence of an Interaction Between Navigational Strategies Based on Local and Distal Landmarks Journal of Experimental Psychology, 2004, 30, 34-44.	1.7	13
30	Hippocampal Lesions Disrupt Navigation Based on the Shape of the Environment Behavioral Neuroscience, 2004, 118, 1011-1021.	1.2	67
31	Transfer of Spatial Behavior Between Different Environments: Implications for Theories of Spatial Learning and for the Role of the Hippocampus in Spatial Learning Journal of Experimental Psychology, 2004, 30, 135-147.	1.7	110
32	Hippocampal Lesions Modulate Both Associative and Nonassociative Priming Behavioral Neuroscience, 2004, 118, 377-382.	1.2	19
33	Absence of Overshadowing and Blocking between Landmarks and the Geometric Cues Provided by the Shape of a Test Arena. Quarterly Journal of Experimental Psychology Section B: Comparative and Physiological Psychology, 2003, 56, 114-126.	2.8	63
34	A larger hippocampus is associated with longer-lasting spatial memory. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 6941-6944.	7.1	128
35	How do animals â€~do' geometry?. Animal Behaviour, 1999, 57, F4-F8.	1.9	13
36	Spatial accuracy in food-storing and nonstoring birds. Animal Behaviour, 1999, 58, 727-734.	1.9	41

#	Article	IF	CITATIONS
37	What Suboptimal Choice Tells Us About the Control of Behavior. Comparative Cognition and Behavior Reviews, 0, 15, 1-24.	2.0	1
38	What can we learn about navigation from associative learning?. Comparative Cognition and Behavior Reviews, 0, 15, 163-186.	2.0	2