Junfeng Tong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7307553/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The comprehensive utilization of the synergistic effect of fullerene and non-fullerene acceptors to achieve highly efficient polymer solar cells. Journal of Materials Chemistry A, 2019, 7, 15841-15850.	10.3	118
2	High-performance all-polymer solar cells based on fluorinated naphthalene diimide acceptor polymers with fine-tuned crystallinity and enhanced dielectric constants. Nano Energy, 2018, 45, 368-379.	16.0	101
3	Enhanced efficiency of polymer solar cells through synergistic optimization of mobility and tuning donor alloys by adding high-mobility conjugated polymers. Journal of Materials Chemistry C, 2018, 6, 11015-11022.	5.5	87
4	Self-doping n-type polymer as a cathode interface layer enables efficient organic solar cells by increasing built-in electric field and boosting interface contact. Journal of Materials Chemistry C, 2019, 7, 11152-11159.	5.5	87
5	Enhanced Organic Photovoltaic Performance through Modulating Vertical Composition Distribution and Promoting Crystallinity of the Photoactive Layer by Diphenyl Sulfide Additives. ACS Applied Materials & Interfaces, 2019, 11, 7022-7029.	8.0	79
6	Insights into Excitonic Dynamics of Terpolymer-Based High-Efficiency Nonfullerene Polymer Solar Cells: Enhancing the Yield of Charge Separation States. ACS Applied Materials & Interfaces, 2020, 12, 8475-8484.	8.0	62
7	Significantly Boosting Efficiency of Polymer Solar Cells by Employing a Nontoxic Halogen-Free Additive. ACS Applied Materials & Interfaces, 2021, 13, 11117-11124.	8.0	54
8	Non-toxic green food additive enables efficient polymer solar cells through adjusting the phase composition distribution and boosting charge transport. Journal of Materials Chemistry C, 2020, 8, 2483-2490.	5.5	51
9	Efficient inverted organic solar cells with a thin natural biomaterial l-Arginine as electron transport layer. Solar Energy, 2020, 196, 168-176.	6.1	51
10	Non-Halogenated Polymer Donor-Based Organic Solar Cells with a Nearly 15% Efficiency Enabled by a Classic Ternary Strategy. ACS Applied Energy Materials, 2021, 4, 1774-1783.	5.1	47
11	Synthetically controlling the optoelectronic properties of dithieno[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene-alt-diketopyrrolopyrrole-conjugated polymers efficient solar cells. Journal of Materials Chemistry A, 2014, 2, 15316-15325.	fo¤0.3	46
12	Two Compatible Acceptors as an Alloy Model with a Halogen-Free Solvent for Efficient Ternary Polymer Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 9386-9397.	8.0	46
13	Enhanced organic photovoltaic performance through promoting crystallinity of photoactive layer and conductivity of hole-transporting layer by V2O5 doped PEDOT:PSS hole-transporting layers. Solar Energy, 2020, 211, 1102-1109.	6.1	40
14	Ternary solar cells via ternary polymer donors and third component PC71BM to optimize morphology with 13.15% efficiency. Solar Energy, 2021, 222, 18-26.	6.1	37
15	An Alternating Copolymer Derived from Indolo[3,2â€ <i>b</i>]carbazole and 4,7â€Di(thieno[3,2â€ <i>b</i>]thienâ€2â€yl)â€2,1,3â€benzothiadiazole for Photovoltaic Cells. Macromolecular Communications, 2010, 31, 1287-1292.	Ra pio	32
16	Utilizing non-conjugated small-molecular tetrasodium iminodisuccinateas electron transport layer enabled improving efficiency of organic solar cells. Optical Materials, 2022, 129, 112520.	3.6	32
17	Medium band gap conjugated polymers from thienoacene derivatives and pentacyclic aromatic lactam as promising alternatives of poly(3â€hexylthiophene) in photovoltaic application. Journal of Polymer Science Part A, 2018, 56, 85-95.	2.3	30
18	A New Alcoholâ€Soluble Polymer PFNâ€ID as Cathode Interlayer to Optimize Performance of Conventional Polymer Solar Cells by Increasing Electron Mobility. Energy Technology, 2022, 10, .	3.8	30

JUNFENG TONG

#	Article	IF	CITATIONS
19	Enhanced Photovoltaic Performance in D-ï€-A Copolymers Containing Triisopropylsilylethynyl-Substituted Dithienobenzodithiophene by Modulating the Electron-Deficient Units. Polymers, 2019, 11, 12.	4.5	28
20	Enhance the efficiency of polymer solar cells through regulating phase segregation and improving charge transport via non-toxic halogen-free additive. Solar Energy, 2021, 218, 375-382.	6.1	26
21	Boosting Up Performance of Inverted Photovoltaic Cells from Bis(alkylthien-2-yl)dithieno[2,3- <i>d</i> :2′,3′- <i>d</i> ′]benzo[1,2- <i>b</i> :4′,5′- <i>b</i> ′]di thic Copolymers by Advantageous Vertical Phase Separation. ACS Applied Materials & amp; Interfaces, 2017, 9, 10937-10945.	phene-Ba 8.0	sed 25
22	An alkylthieno-2-yl flanked dithieno[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene-based low band gap conjugated polymer for high performance photovoltaic solar cells. RSC Advances, 2015, 5, 12879-12885.	3.6	24
23	Large branched alkylthienyl bridged naphtho[1,2- <i>c</i> :5,6- <i>c</i> ′]bis[1,2,5]thiadiazole-containing low bandgap copolymers: Synthesis and photovoltaic application. Journal of Macromolecular Science - Pure and Applied Chemistry, 2017, 54, 176-185.	2.2	22
24	Effect of alkylthiophene spacers and fluorine on the optoelectronic properties of 5,10-bis(dialkylthien-2-yl)dithieno[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene-alt-benzothiadiazole derivative copolymers. RSC Advances, 2017, 7, 22845-22854.	3.6	22
25	Effects of alkyl side chain length of low bandgap naphtho[1,2â€ <i>c</i> :5,6â€ <i>c</i> ′]bis[1,2,5]thiadiazoleâ€based copolymers on the optoelectronic propert of polymer solar cells. Journal of Polymer Science Part A, 2018, 56, 2059-2071.	i e s3	20
26	Synthesis and simultaneously enhanced photovoltaic property of poly[4,4,9,9-tetra(4-octyloxyphenyl)-2,7-indaceno[1,2-b:5,6-b′]dithiophene-alt-2,5-thieno[3,2-b]thiophene]. Polymer, 2013, 54, 607-613.	3.8	19
27	Ultrafast Kinetics of Chlorinated Polymer Donors: A Faster Excitonic Dissociation Path. ACS Applied Materials & Interfaces, 2022, 14, 6945-6957.	8.0	18
28	Dithieno[2,3-d:2′,3′-d′]naphtho[1,2-b:3,4-b′]dithiophene – a novel electron-rich building block for lo band gap conjugated polymers. Journal of Materials Chemistry C, 2014, 2, 1601.	¥5.5	17
29	Improved Photovoltaic Performance of Polymer Solar Cells via a Volatile and Nonhalogen Additive to Optimize Crystallinity. ACS Applied Energy Materials, 2021, 4, 7129-7137.	5.1	17
30	Impact of alkyl side chain on the photostability and optoelectronic properties of indacenodithieno[3,2― b]thiophene―alt â€naphtho[1,2―c :5,6―c ′]bis[1,2,5]thiadiazole medium bandgap copolymers. Polymer International, 2020, 69, 192-205.	3.1	11
31	Systematically investigating the influence of inserting alkylthiophene spacers on the aggregation, photo-stability and optoelectronic properties of copolymers from dithieno [2,3- <i>d</i> :2 \hat{e}^2 ,3 \hat{e}^2 - <i>d</i> : \hat{a}^2]benzo [1,2- <i>b</i> :4,5- <i>d</i>)d)defivatives Polymer Chemistry 2019 10 972-982	ple.9	10
32	Elevated Photovoltaic Performance in Medium Bandgap Copolymers Composed of Indacenodi-thieno[3,2-b]thiophene and Benzothiadiazole Subunits by Modulating the π-Bridge. Polymers, 2020, 12, 368.	4.5	10
33	Enhancement Efficiency of Organic Photovoltaic Cells via Green Solvents and Nontoxic Halogenâ€Free Additives. Advanced Sustainable Systems, 2021, 5, 2100235.	5.3	10
34	Construction of effective organic solar cell using phenanthroline derivatives as cathode interface layer. Optical Materials, 2021, 122, 111647.	3.6	10
35	36% Enhanced Efficiency of Ternary Organic Solar Cells by Doping a NT-Based Polymer as an Electron-Cascade Donor. Polymers, 2018, 10, 703.	4.5	9
36	Solution-processible Cd-doped ZnO nanoparticles as an electron transport layer to achieve high performance polymer solar cells through improve conductivity and light transmittance. Molecular Crystals and Liquid Crystals, 2019, 692, 74-82.	0.9	9

JUNFENG TONG

#	Article	IF	CITATIONS
37	Fluorination Effect for Highly Conjugated Alternating Copolymers Involving Thienylenevinylene-Thiophene-Flanked Benzodithiophene and Benzothiadiazole Subunits in Photovoltaic Application. Polymers, 2020, 12, 504.	4.5	7
38	Impact of fluorination on photovoltaic performance in high thermo- and photo-stability perylene diimide-based nonfullerene small molecular acceptors. Optical Materials, 2021, 121, 111593.	3.6	7
39	Effect of Flank Rotation on the Photovoltaic Properties of Dithieno[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene-Based Narrow Band Gap Copolymers. Polymers 11, 239.	, 20 19,	6
40	Wide bandgap conjugated polymers based on bithiophene and benzotriazole for bulk heterojunction solar cells: Thiophene versus thieno[3,2- <i>b</i>]thiophene as ï€-conjugated spacers. Journal of Macromolecular Science - Pure and Applied Chemistry, 2017, 54, 565-574.	2.2	5
41	Interaction between Coomassie brilliant blue G250 and octylphenol polyoxyethylene ether (10) in aqueous solution. Journal of Dispersion Science and Technology, 2018, 39, 1208-1213.	2.4	5
42	Simultaneously enhancing the dielectric constant, photo-response and deepening HOMO levels of benzo[1,2-b;4,5-b']dithiophene derivatives-based conjugated polymers. Dyes and Pigments, 2020, 177, 108263.	3.7	5
43	Twisted Alkylthiothienâ€2â€yl Flanks and Extended Conjugation Length Synergistically Enhanced Photovoltaic Performance by Boosting Dielectric Constant and Carriers Kinetic Characteristics. Macromolecular Chemistry and Physics, 2021, 222, 2100030.	2.2	5
44	Fluorination effect of benzo[c][1,2,5]thiadiazole-alt-oligothiophene-based copolymers involving all straight flexible side chain in photovoltaic application. Optical Materials, 2020, 108, 110321.	3.6	4
45	Synthesis and Photovoltaic Effect of Electron-Withdrawing Units for Low Band Gap Conjugated Polymers Bearing Bi(thienylenevinylene) Side Chains. Polymers, 2019, 11, 1461.	4.5	3
46	Impact of linker positions for thieno[3,2-b]thiophene in wide band gap benzo[1,2-b:4,5-b′]dithiophene-based photovoltaic polymers. Journal of Materials Research, 2019, 34, 2057-2066.	2.6	2
47	Synthesis and photovoltaic investigation of dithieno[2,3â€ <i>d</i> :2â€2,3â€2â€ <i>d</i> â€2]â€benzo[1,2â€ <i>b</i> :3,4â€ <i>b</i> â€2:5,6â€ <i>d</i> â€3]trit polymer with an enlarged Ï€â€conjugated system. Polymers for Advanced Technologies, 2019, 30, 1290-1302.	hjopheneâ	ì€based coi
48	Photodynamic Investigation on the Synergistic Effects of Aromatic Side Chains with Alkylthio Substituents in Nonfullerene Organic Solar Cells. ACS Applied Energy Materials, 2021, 4, 9913-9922.	5.1	1
49	p-nitrophenol-terminated alkyl side chain substituted polymer as high dielectric constant polymer additive enables efficient organic solar cells. Optical Materials, 2022, 127, 112347.	3.6	1