List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7307534/publications.pdf Version: 2024-02-01

LIZENC CAO

#	Article	IF	CITATIONS
1	A Bioinspired Fiveâ€Coordinated Singleâ€Atom Iron Nanozyme for Tumor Catalytic Therapy. Advanced Materials, 2022, 34, e2107088.	21.0	133
2	Antibacterial effects of nano-decoction iron polysulfide in epididymitis and the systematic evaluation of its toxicity on the reproductive health of male mice. Ecotoxicology and Environmental Safety, 2022, 231, 113184.	6.0	3
3	Reverse intratumor bacteria-induced gemcitabine resistance with carbon nanozymes for enhanced tumor catalytic-chemo therapy. Nano Today, 2022, 43, 101395.	11.9	13
4	Metastable Iron Sulfides Gramâ€Dependently Counteract Resistant <i>Gardnerella Vaginalis</i> for Bacterial Vaginosis Treatment. Advanced Science, 2022, 9, e2104341.	11.2	21
5	Ferroptotic stress promotes macrophages against intracellular bacteria. Theranostics, 2022, 12, 2266-2289.	10.0	39
6	Ferritin-Nanocaged ATP Traverses the Blood–Testis Barrier and Enhances Sperm Motility in an Asthenozoospermia Model. ACS Nano, 2022, 16, 4175-4185.	14.6	11
7	Nanozybiotics: Nanozyme-Based Antibacterials against Bacterial Resistance. Antibiotics, 2022, 11, 390.	3.7	23
8	Catalytic antimicrobial therapy using nanozymes. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1769.	6.1	23
9	Metal ions/nucleotide coordinated nanoparticles comprehensively suppress tumor by synergizing ferroptosis with energy metabolism interference. Journal of Nanobiotechnology, 2022, 20, 199.	9.1	26
10	Fe3O4 Nanozymes Improve Neuroblast Differentiation and Blood-Brain Barrier Integrity of the Hippocampal Dentate Gyrus in D-Galactose-Induced Aged Mice. International Journal of Molecular Sciences, 2022, 23, 6463.	4.1	3
11	A Nanozymeâ€Based Artificial Peroxisome Ameliorates Hyperuricemia and Ischemic Stroke. Advanced Functional Materials, 2021, 31, 2007130.	14.9	116
12	Oral Administration of Nanoiron Sulfide Supernatant for the Treatment of Gallbladder Stones with Chronic Cholecystitis. ACS Applied Bio Materials, 2021, 4, 3773-3785.	4.6	10
13	Nanozymes go oral: nanocatalytic medicine facilitates dental health. Journal of Materials Chemistry B, 2021, 9, 1491-1502.	5.8	19
14	Catalytic defense against fungal pathogens using nanozymes. Nanotechnology Reviews, 2021, 10, 1277-1292.	5.8	4
15	The age of bioinspired molybdenumâ€involved nanozymes: Synthesis, catalytic mechanisms, and biomedical applications. View, 2021, 2, 20200188.	5.3	49
16	Fabrication of PAN/FeNPs electrospun nanofibers: Nanozyme and an efficient antimicrobial agent. Materials Today Communications, 2021, 26, 102168.	1.9	5
17	High-Performance Self-Cascade Pyrite Nanozymes for Apoptosis–Ferroptosis Synergistic Tumor Therapy. ACS Nano, 2021, 15, 5735-5751.	14.6	266
18	Ultrasmall FeS ₂ Nanoparticlesâ€Decorated Carbon Spheres with Laserâ€Mediated Ferrous Ion Release for Antibacterial Therapy. Small, 2021, 17, e2005473.	10.0	43

#	Article	IF	CITATIONS
19	Nanozyme-based medicine for enzymatic therapy: progress and challenges. Biomedical Materials (Bristol), 2021, 16, 042002.	3.3	40
20	Artesunate-loaded poly (lactic-co-glycolic acid)/polydopamine-manganese oxides nanoparticles as an oxidase mimic for tumor chemo-catalytic therapy. International Journal of Biological Macromolecules, 2021, 181, 72-81.	7.5	11
21	Tumor Microenvironment-Modulated Nanozymes for NIR-II-Triggered Hyperthermia-Enhanced Photo-Nanocatalytic Therapy via Disrupting ROS Homeostasis. International Journal of Nanomedicine, 2021, Volume 16, 4559-4577.	6.7	18
22	Nanozymes: A clear definition with fuzzy edges. Nano Today, 2021, 40, 101269.	11.9	332
23	Dietary Fe ₃ O ₄ Nanozymes Prevent the Injury of Neurons and Blood–Brain Barrier Integrity from Cerebral Ischemic Stroke. ACS Biomaterials Science and Engineering, 2021, 7, 299-310.	5.2	30
24	Ferrihydrite nanoparticles as the photosensitizer augment microbial infected wound healing with blue light. Nanoscale, 2021, 13, 19123-19132.	5.6	7
25	Unveiling the active sites on ferrihydrite with apparent catalase-like activity for potentiating radiotherapy. Nano Today, 2021, 41, 101317.	11.9	102
26	Vitamin B2 functionalized iron oxide nanozymes for mouth ulcer healing. Science China Life Sciences, 2020, 63, 68-79.	4.9	29
27	Nano-Sized Iron Sulfide: Structure, Synthesis, Properties, and Biomedical Applications. Frontiers in Chemistry, 2020, 8, 818.	3.6	25
28	Nano-decocted ferrous polysulfide coordinates ferroptosis-like death in bacteria for anti-infection therapy. Nano Today, 2020, 35, 100981.	11.9	71
29	A metal-free nanozyme-activated prodrug strategy for targeted tumor catalytic therapy. Nano Today, 2020, 35, 100935.	11.9	126
30	Mucosal Vaccination for Influenza Protection Enhanced by Catalytic Immuneâ€Adjuvant. Advanced Science, 2020, 7, 2000771.	11.2	42
31	Photolysis of methicillin-resistant Staphylococcus aureus using Cu-doped carbon spheres. Biomaterials Science, 2020, 8, 6225-6234.	5.4	11
32	Local delivery of insulin/IGF-1 for bone regeneration: carriers, strategies, and effects. Nanotheranostics, 2020, 4, 242-255.	5.2	31
33	Bimetallic CuCo ₂ S ₄ Nanozymes with Enhanced Peroxidase Activity at Neutral pH for Combating Burn Infections. ChemBioChem, 2020, 21, 2620-2627.	2.6	35
34	Cytotoxicity studies of Fe ₃ O ₄ nanoparticles in chicken macrophage cells. Royal Society Open Science, 2020, 7, 191561.	2.4	12
35	Chiral Carbon Dots Mimicking Topoisomeraseâ€I To Mediate the Topological Rearrangement of Supercoiled DNA Enantioselectively. Angewandte Chemie, 2020, 132, 11180-11185.	2.0	25
36	Chiral Carbon Dots Mimicking Topoisomeraseâ€I To Mediate the Topological Rearrangement of Supercoiled DNA Enantioselectively. Angewandte Chemie - International Edition, 2020, 59, 11087-11092.	13.8	100

#	Article	IF	CITATIONS
37	Oral biofilm elimination by combining iron-based nanozymes and hydrogen peroxide-producing bacteria. Biomaterials Science, 2020, 8, 2447-2458.	5.4	38
38	Self-Assembled Multiple-Enzyme Composites for Enhanced Synergistic Cancer Starving–Catalytic Therapy. ACS Applied Materials & Interfaces, 2020, 12, 20191-20201.	8.0	33
39	Nanozymology: An Overview. Nanostructure Science and Technology, 2020, , 3-16.	0.1	11
40	Nanozyme-Based Tumor Theranostics. Nanostructure Science and Technology, 2020, , 425-457.	0.1	3
41	Nanozymes for Antimicrobes: Precision Biocide. Nanostructure Science and Technology, 2020, , 489-526.	0.1	4
42	Kinetics and Mechanisms for Nanozymes. Nanostructure Science and Technology, 2020, , 17-39.	0.1	12
43	Iron Oxide Nanozyme: A Multifunctional Enzyme Mimetics for Biomedical Application. Nanostructure Science and Technology, 2020, , 105-140.	0.1	28
44	Current developments and trends in nanobiocatalysis. Scientia Sinica Vitae, 2020, 50, 682-697.	0.3	7
45	Light-enhanced sponge-like carbon nanozyme used for synergetic antibacterial therapy. Biomaterials Science, 2019, 7, 4131-4141.	5.4	74
46	Copper/Carbon Hybrid Nanozyme: Tuning Catalytic Activity by the Copper State for Antibacterial Therapy. Nano Letters, 2019, 19, 7645-7654.	9.1	257
47	A Singleâ€Atom Nanozyme for Wound Disinfection Applications. Angewandte Chemie, 2019, 131, 4965-4970.	2.0	94
48	A Singleâ€Atom Nanozyme for Wound Disinfection Applications. Angewandte Chemie - International Edition, 2019, 58, 4911-4916.	13.8	607
49	Synthesis of magnetite hybrid nanocomplexes to eliminate bacteria and enhance biofilm disruption. Biomaterials Science, 2019, 7, 2833-2840.	5.4	30
50	Catalytic inactivation of influenza virus by iron oxide nanozyme. Theranostics, 2019, 9, 6920-6935.	10.0	90
51	Dextran-Coated Iron Oxide Nanoparticles as Biomimetic Catalysts for Localized and pH-Activated Biofilm Disruption. ACS Nano, 2019, 13, 4960-4971.	14.6	243
52	Exosome-like Nanozyme Vesicles for H ₂ O ₂ -Responsive Catalytic Photoacoustic Imaging of Xenograft Nasopharyngeal Carcinoma. Nano Letters, 2019, 19, 203-209.	9.1	150
53	Fe3O4 Nanoparticles Attenuated Salmonella Infection in Chicken Liver Through Reactive Oxygen and Autophagy via PI3K/Akt/mTOR Signaling. Frontiers in Physiology, 2019, 10, 1580.	2.8	20
54	Nanozymes: Biomedical Applications of Enzymatic Fe3O4 Nanoparticles from In Vitro to In Vivo. Advances in Experimental Medicine and Biology, 2019, 1174, 291-312.	1.6	8

#	Article	IF	CITATIONS
55	Au-PLGA Hybrid Nanoparticles with Catalase-Mimicking and near-Infrared Photothermal Activities for Photoacoustic Imaging-Guided Cancer Therapy. ACS Biomaterials Science and Engineering, 2018, 4, 1083-1091.	5.2	33
56	Tumor Catalytic–Photothermal Therapy with Yolk–Shell Gold@Carbon Nanozymes. ACS Applied Materials & Interfaces, 2018, 10, 4502-4511.	8.0	130
57	In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nature Communications, 2018, 9, 1440.	12.8	759
58	Emerging Biomedical Applications of Enzyme-Like Catalytic Nanomaterials. Trends in Biotechnology, 2018, 36, 15-29.	9.3	154
59	Aloe-Emodin/Carbon Nanoparticle Hybrid Gels with Light-Induced and Long-Term Antibacterial Activity. ACS Biomaterials Science and Engineering, 2018, 4, 4391-4400.	5.2	44
60	Iron oxide nanozyme suppresses intracellular <i>Salmonella</i> Enteritidis growth and alleviates infection <i>in vivo</i> . Theranostics, 2018, 8, 6149-6162.	10.0	91
61	Converting organosulfur compounds to inorganic polysulfides against resistant bacterial infections. Nature Communications, 2018, 9, 3713.	12.8	141
62	Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nature Protocols, 2018, 13, 1506-1520.	12.0	654
63	Mechanistic Insight into the Light-Irradiated Carbon Capsules as an Antibacterial Agent. ACS Applied Materials & Interfaces, 2018, 10, 25026-25036.	8.0	51
64	Do catalytic nanoparticles offer an improved therapeutic strategy to combat dental biofilms?. Nanomedicine, 2017, 12, 275-279.	3.3	15
65	Biomimicry Promotes the Efficiency of a 10â€Step Sequential Enzymatic Reaction on Nanoparticles, Converting Glucose to Lactate. Angewandte Chemie - International Edition, 2017, 56, 235-238.	13.8	35
66	Biomimicry Promotes the Efficiency of a 10â€Step Sequential Enzymatic Reaction on Nanoparticles, Converting Glucose to Lactate. Angewandte Chemie, 2017, 129, 241-244.	2.0	2
67	Optimization of Fe ₃ O ₄ nanozyme activity via single amino acid modification mimicking an enzyme active site. Chemical Communications, 2017, 53, 424-427.	4.1	334
68	Iron Oxide Nanozyme: A Multifunctional Enzyme Mimetic for Biomedical Applications. Theranostics, 2017, 7, 3207-3227.	10.0	421
69	Mn ²⁺ -coordinated PDA@DOX/PLGA nanoparticles as a smart theranostic agent for synergistic chemo-photothermal tumor therapy. International Journal of Nanomedicine, 2017, Volume 12, 3331-3345.	6.7	78
70	Nanozymes: an emerging field bridging nanotechnology and biology. Science China Life Sciences, 2016, 59, 400-402.	4.9	214
71	<scp>l</scp> -Arginine Modifies the Exopolysaccharide Matrix and Thwarts Streptococcus mutans Outgrowth within Mixed-Species Oral Biofilms. Journal of Bacteriology, 2016, 198, 2651-2661.	2.2	99
72	Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries inÂvivo. Biomaterials, 2016, 101, 272-284.	11.4	236

#	Article	IF	CITATIONS
73	Effects of Nanoparticle Size on Multilayer Formation and Kinetics of Tethered Enzymes. Bioconjugate Chemistry, 2015, 26, 1931-1938.	3.6	24
74	Ferromagnetic nanoparticles with peroxidase-like activity enhance the cleavage of biological macromolecules for biofilm elimination. Nanoscale, 2014, 6, 2588-2593.	5.6	213
75	Human ferritin for tumor detection and therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2013, 5, 287-298.	6.1	66
76	Sorting Short Fragments of Single-Stranded DNA with an Evolving Electric Double Layer. Journal of Physical Chemistry B, 2013, 117, 2267-2272.	2.6	7
77	Biomimicry Enhances Sequential Reactions of Tethered Glycolytic Enzymes, TPI and GAPDHS. PLoS ONE, 2013, 8, e61434.	2.5	10
78	Multistage Magnetic Separation of Microspheres Enabled by Temperature-Responsive Polymers. ACS Applied Materials & Interfaces, 2012, 4, 3041-3046.	8.0	8
79	Ex Vivo Detection of Iron Oxide Magnetic Nanoparticles in Mice Using Their Intrinsic Peroxidase-Mimicking Activity. Molecular Pharmaceutics, 2012, 9, 1983-1989.	4.6	51
80	Enzyme-Controlled Self-Assembly and Transformation of Nanostructures in a Tetramethylbenzidine/Horseradish Peroxidase/H ₂ O ₂ System. ACS Nano, 2011, 5, 6736-6742.	14.6	53
81	Separation of single-stranded DNA fragments at a 10-nucleotide resolution by stretching in microfluidic channels. Lab on A Chip, 2011, 11, 4036.	6.0	8
82	Mutation Screening Based on the Mechanical Properties of DNA Molecules Tethered to a Solid Surface. Journal of Physical Chemistry B, 2010, 114, 1064-1068.	2.6	13
83	Silica coating magnetic nanoparticle-based silver enhancement immunoassay for rapid electrical detection of ricin toxin. Toxicon, 2010, 55, 145-152.	1.6	32
84	A novel application of iron oxide nanoparticles for detection of hydrogen peroxide in acid rain. Materials Letters, 2008, 62, 3972-3974.	2.6	36
85	Label-Free Colorimetric Detection of Gelatinases on Nanoporous Silicon Photonic Films. Analytical Chemistry, 2008, 80, 1468-1473.	6.5	58
86	Magnetite Nanoparticle-Linked Immunosorbent Assay. Journal of Physical Chemistry C, 2008, 112, 17357-17361.	3.1	146
87	Separation of long DNA molecules through cleavage of hydrogen bonds under a stretching force. Applied Physics Letters, 2007, 91, .	3.3	17
88	Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotechnology, 2007, 2, 577-583.	31.5	5,080
89	Three-Dimensional Functionalized Tetrapod-like ZnO Nanostructures for Plasmid DNA Delivery. Small, 2006, 2, 621-625.	10.0	124
90	Carbon Nanotube Delivery of the GFP Gene into Mammalian Cells. ChemBioChem, 2006. 7. 239-242.	2.6	156

3

#	Article	IF	CITATIONS
91	Anti-CD146 monoclonal antibody AA98 inhibits angiogenesis via suppression of nuclear factor-l°B activation. Molecular Cancer Therapeutics, 2006, 5, 2872-2878.	4.1	54

92 Enzyme-Like Property (Nanozyme) of Iron Oxide Nanoparticles. , 0, , .