Andriy Chmyrov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7307347/publications.pdf

Version: 2024-02-01

26 papers

1,141 citations

471509 17 h-index 23 g-index

28 all docs 28 docs citations

times ranked

28

1823 citing authors

#	Article	IF	Citations
1	Nanoscopy with more than 100,000 'doughnuts'. Nature Methods, 2013, 10, 737-740.	19.0	231
2	Strategies to Improve Photostabilities in Ultrasensitive Fluorescence Spectroscopy. Journal of Physical Chemistry A, 2007, 111, 429-440.	2.5	207
3	Iodide as a Fluorescence Quencher and Promoter—Mechanisms and Possible Implications. Journal of Physical Chemistry B, 2010, 114, 11282-11291.	2.6	98
4	A submicrometre silicon-on-insulator resonator for ultrasound detection. Nature, 2020, 585, 372-378.	27.8	98
5	Label-free metabolic imaging by mid-infrared optoacoustic microscopy in living cells. Nature Biotechnology, 2020, 38, 293-296.	17.5	74
6	Twoâ€Color RESOLFT Nanoscopy with Green and Red Fluorescent Photochromic Proteins. ChemPhysChem, 2014, 15, 655-663.	2.1	53
7	Comment on "Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics― Science, 2016, 352, 527-527.	12.6	43
8	Förster Resonance Energy Transfer beyond 10 nm: Exploiting the Triplet State Kinetics of Organic Fluorophores. Journal of Physical Chemistry B, 2011, 115, 13360-13370.	2.6	37
9	Triplet-State Investigations of Fluorescent Dyes at Dielectric Interfaces Using Total Internal Reflection Fluorescence Correlation Spectroscopy. Journal of Physical Chemistry A, 2009, 113, 5554-5566.	2.5	31
10	NeuBtrackerâ€"imaging neurobehavioral dynamics in freely behaving fish. Nature Methods, 2017, 14, 1079-1082.	19.0	31
11	Characterization of new fluorescent labels for ultra-high resolution microscopy. Photochemical and Photobiological Sciences, 2008, 7, 1378.	2.9	30
12	Challenging a Preconception: Optoacoustic Spectrum Differs from the Optical Absorption Spectrum of Proteins and Dyes for Molecular Imaging. Analytical Chemistry, 2020, 92, 10717-10724.	6.5	26
13	Achromatic light patterning and improved image reconstruction for parallelized RESOLFT nanoscopy. Scientific Reports, 2017, 7, 44619.	3.3	25
14	Characterization of Reversibly Switchable Fluorescent Proteins in Optoacoustic Imaging. Analytical Chemistry, 2018, 90, 10527-10535.	6.5	24
15	Genetically encoded photo-switchable molecular sensors for optoacoustic and super-resolution imaging. Nature Biotechnology, 2022, 40, 598-605.	17.5	23
16	Multifunctional Magneto-Plasmonic Fe3O4/Au Nanocomposites: Approaching Magnetophoretically-Enhanced Photothermal Therapy. Nanomaterials, 2021, 11, 1113.	4.1	21
17	Quenching of Triplet State Fluorophores for Studying Diffusion-Mediated Reactions in Lipid Membranes. Biophysical Journal, 2010, 99, 3821-3830.	0.5	19
18	Electrostatic Interactions of Fluorescent Molecules with Dielectric Interfaces Studied by Total Internal Reflection Fluorescence Correlation Spectroscopy. International Journal of Molecular Sciences, 2010, 11, 386-406.	4.1	15

#	Article	lF	CITATIONS
19	Structure-Based Mutagenesis of Phycobiliprotein smURFP for Optoacoustic Imaging. ACS Chemical Biology, 2019, 14, 1896-1903.	3.4	15
20	Homogentisic acid-derived pigment as a biocompatible label for optoacoustic imaging of macrophages. Nature Communications, 2019, 10, 5056.	12.8	13
21	Siliconâ€Photonics Point Sensor for Highâ€Resolution Optoacoustic Imaging. Advanced Optical Materials, 2021, 9, 2100256.	7.3	9
22	Noninvasive visualization of electrical conductivity in tissues at the micrometer scale. Science Advances, 2021, 7, .	10.3	8
23	Recovery of Photoinduced Reversible Dark States Utilized for Molecular Diffusion Measurements. Analytical Chemistry, 2010, 82, 9998-10005.	6.5	7
24	Maximizing the Fluorescence Signal and Photostability of Fluorophores by Quenching Dark-States. Biophysical Journal, 2014, 106, 196a.	0.5	0
25	Characterization of New Fluorescent Labels for Ultrahigh Resolution Microscopy. , 2009, , .		0
26	RESOLFT Nanoscopy in Living Cells at High Speed. , 2013, , .		0