
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7307346/publications.pdf Version: 2024-02-01

LOSE L DONS

#	Article	IF	CITATIONS
1	Rehabilitation of gait after stroke: a review towards a top-down approach. Journal of NeuroEngineering and Rehabilitation, 2011, 8, 66.	4.6	396
2	The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. Journal of NeuroEngineering and Rehabilitation, 2015, 12, 54.	4.6	271
3	The MANUS-HAND Dextrous Robotics Upper Limb Prosthesis: Mechanical and Manipulation Aspects. Autonomous Robots, 2004, 16, 143-163.	4.8	234
4	Rehabilitation Exoskeletal Robotics. IEEE Engineering in Medicine and Biology Magazine, 2010, 29, 57-63.	0.8	174
5	IMU-Based Classification of Parkinson's Disease From Gait: A Sensitivity Analysis on Sensor Location and Feature Selection. IEEE Journal of Biomedical and Health Informatics, 2018, 22, 1765-1774.	6.3	141
6	Review of hybrid exoskeletons to restore gait following spinal cord injury. Journal of Rehabilitation Research and Development, 2012, 49, 497.	1.6	137
7	A Closed-Loop Brain–Computer Interface Triggering an Active Ankle–Foot Orthosis for Inducing Cortical Neural Plasticity. IEEE Transactions on Biomedical Engineering, 2014, 61, 2092-2101.	4.2	137
8	Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton. Journal of NeuroEngineering and Rehabilitation, 2014, 11, 27.	4.6	136
9	Shared muscle synergies in human walking and cycling. Journal of Neurophysiology, 2014, 112, 1984-1998.	1.8	119
10	Compliant lower limb exoskeletons: a comprehensive review on mechanical design principles. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 55.	4.6	117
11	Performance Evaluation of Lower Limb Exoskeletons: A Systematic Review. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 1573-1583.	4.9	105
12	Multifingered dextrous robotics hand design and control: a review. Robotica, 1999, 17, 661-674.	1.9	94
13	Real-Time Estimation of Pathological Tremor Parameters from Gyroscope Data. Sensors, 2010, 10, 2129-2149.	3.8	90
14	Human-like compliant locomotion: state of the art of robotic implementations. Bioinspiration and Biomimetics, 2016, 11, 051002.	2.9	87
15	Empirical mode decomposition: a novel technique for the study of tremor time series. Medical and Biological Engineering and Computing, 2006, 44, 569-582.	2.8	85
16	Voluntary control of wearable robotic exoskeletons by patients with paresis via neuromechanical modeling. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 91.	4.6	76
17	Design and implementation of an inertial measurement unit for control of artificial limbs: Application on leg orthoses. Sensors and Actuators B: Chemical, 2006, 118, 333-337.	7.8	70
18	A neuroprosthesis for tremor management through the control of muscle co-contraction. Journal of NeuroEngineering and Rehabilitation, 2013, 10, 36.	4.6	69

#	Article	IF	CITATIONS
19	Hybrid robotic systems for upper limb rehabilitation after stroke: A review. Medical Engineering and Physics, 2016, 38, 1279-1288.	1.7	69
20	Biologically based design of an actuator system for a knee–ankle–foot orthosis. Mechanism and Machine Theory, 2009, 44, 860-872.	4.5	66
21	Effects of robotic guidance on the coordination of locomotion. Journal of NeuroEngineering and Rehabilitation, 2013, 10, 79.	4.6	66
22	Study of the motion artefacts of skin-mounted inertial sensors under different attachment conditions. Physiological Measurement, 2008, 29, N21-N31.	2.1	64
23	Influence of common synaptic input to motor neurons on the neural drive to muscle in essential tremor. Journal of Neurophysiology, 2015, 113, 182-191.	1.8	58
24	Mechanical suppression of essential tremor. Cerebellum, 2007, 6, 73-78.	2.5	57
25	Wearable inertial mouse for children with physical and cognitive impairments. Sensors and Actuators A: Physical, 2010, 162, 248-259.	4.1	57
26	Combining muscle synergies and biomechanical analysis to assess gait in stroke patients. Journal of Biomechanics, 2017, 63, 98-103.	2.1	57
27	The Phase Difference Between Neural Drives to Antagonist Muscles in Essential Tremor Is Associated with the Relative Strength of Supraspinal and Afferent Input. Journal of Neuroscience, 2015, 35, 8925-8937.	3.6	56
28	An adaptive control strategy for postural stability using a wearable robot. Robotics and Autonomous Systems, 2015, 73, 16-23.	5.1	53
29	Benchmarking Bipedal Locomotion: A Unified Scheme for Humanoids, Wearable Robots, and Humans. IEEE Robotics and Automation Magazine, 2015, 22, 103-115.	2.0	53
30	Virtual reality training and EMG control of the MANUS hand prosthesis. Robotica, 2005, 23, 311-317.	1.9	46
31	A predictive model of muscle excitations based on muscle modularity for a large repertoire of human locomotion conditions. Frontiers in Computational Neuroscience, 2015, 9, 114.	2.1	45
32	Electrical Stimulation of Afferent Pathways for the Suppression of Pathological Tremor. Frontiers in Neuroscience, 2017, 11, 178.	2.8	44
33	Empowering and Assisting Natural Human Mobility: The Simbiosis Walker. International Journal of Advanced Robotic Systems, 2011, 8, 29.	2.1	42
34	Neurorobotic and hybrid management of lower limb motor disorders: a review. Medical and Biological Engineering and Computing, 2011, 49, 1119-1130.	2.8	41
35	Immediate effects of a controllable knee ankle foot orthosis for functional compensation of gait in patients with proximal leg weakness. Medical and Biological Engineering and Computing, 2008, 46, 43-53.	2.8	40
36	Exoskeletons in Rehabilitation Robotics. Springer Tracts in Advanced Robotics, 2011, , .	0.4	40

#	Article	IF	CITATIONS
37	Motor modules in robot-aided walking. Journal of NeuroEngineering and Rehabilitation, 2012, 9, 76.	4.6	39
38	Using a brain-machine interface to control a hybrid upper limb exoskeleton during rehabilitation of patients with neurological conditions. Journal of NeuroEngineering and Rehabilitation, 2015, 12, 92.	4.6	39
39	Influences of the biofeedback content on robotic post-stroke gait rehabilitation: electromyographic vs joint torque biofeedback. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 95.	4.6	39
40	Evaluation of a wearable orthosis and an associated algorithm for tremor suppression. Physiological Measurement, 2007, 28, 415-425.	2.1	37
41	Hybrid gait training with an overground robot for people with incomplete spinal cord injury: a pilot study. Frontiers in Human Neuroscience, 2014, 8, 298.	2.0	36
42	Advances in selective activation of muscles for non-invasive motor neuroprostheses. Journal of NeuroEngineering and Rehabilitation, 2016, 13, 56.	4.6	35
43	Neural Decoding of Robot-Assisted Gait During Rehabilitation After Stroke. American Journal of Physical Medicine and Rehabilitation, 2018, 97, 541-550.	1.4	35
44	Modular control of gait after incomplete spinal cord injury: differences between sides. Spinal Cord, 2017, 55, 79-86.	1.9	33
45	Online Assessment of Human-Robot Interaction for Hybrid Control of Walking. Sensors, 2012, 12, 215-225.	3.8	32
46	Hybrid therapy of walking with Kinesis overground robot for persons with incomplete spinal cord injury: A feasibility study. Robotics and Autonomous Systems, 2015, 73, 44-58.	5.1	32
47	Objectives and technological approach to the development of the multifunctional MANUS upper limb prosthesis. Robotica, 2005, 23, 301-310.	1.9	31
48	Estimating the 3D-position from time delay data of US-waves: experimental analysis and a new processing algorithm. Sensors and Actuators A: Physical, 2002, 101, 311-321.	4.1	30
49	A robotic vehicle for disabled children. IEEE Engineering in Medicine and Biology Magazine, 2005, 24, 55-63.	0.8	30
50	Extraction of user's navigation commands from upper body force interaction in walker assisted gait. BioMedical Engineering OnLine, 2010, 9, 37.	2.7	30
51	Hysteresis compensation in a magnetostrictive linear position sensor. Sensors and Actuators A: Physical, 2004, 110, 247-253.	4.1	29
52	Muscle Synergies in Cycling after Incomplete Spinal Cord Injury: Correlation with Clinical Measures of Motor Function and Spasticity. Frontiers in Human Neuroscience, 2015, 9, 706.	2.0	29
53	Individual differences in the neural strategies to control the lateral and medial head of the quadriceps during a mechanically constrained task. Journal of Applied Physiology, 2021, 130, 269-281.	2.5	28
54	A Robust Kalman Algorithm to Facilitate Human-Computer Interaction for People with Cerebral Palsy, Using a New Interface Based on Inertial Sensors. Sensors, 2012, 12, 3049-3067.	3.8	27

#	Article	IF	CITATIONS
55	A Subject-Specific Kinematic Model to Predict Human Motion in Exoskeleton-Assisted Gait. Frontiers in Neurorobotics, 2018, 12, 18.	2.8	27
56	Peripheral electrical stimulation to reduce pathological tremor: a review. Journal of NeuroEngineering and Rehabilitation, 2021, 18, 33.	4.6	27
57	A convolutional neural network to identify motor units from high-density surface electromyography signals in real time. Journal of Neural Engineering, 2021, 18, 056003.	3.5	27
58	Feedback error learning controller for functional electrical stimulation assistance in a hybrid robotic system for reaching rehabilitation. European Journal of Translational Myology, 2016, 26, 6164.	1.7	26
59	A thin-film multichannel electrode for muscle recording and stimulation in neuroprosthetics applications. Journal of Neural Engineering, 2019, 16, 026035.	3.5	26
60	Advantages and limitations of cymbals for sensor and actuator applications. Sensors and Actuators A: Physical, 2006, 132, 63-69.	4.1	25
61	Low Latency Estimation of Motor Intentions to Assist Reaching Movements along Multiple Sessions in Chronic Stroke Patients: A Feasibility Study. Frontiers in Neuroscience, 2017, 11, 126.	2.8	23
62	Tunability of Cymbals as Piezocomposite Transducers. Journal of Electroceramics, 2005, 14, 221-229.	2.0	22
63	Effect of bonding layer on the electromechanical response of the cymbal metal-ceramic piezocomposite. Journal of the European Ceramic Society, 2007, 27, 1143-1149.	5.7	22
64	Intramuscular Stimulation of Muscle Afferents Attains Prolonged Tremor Reduction in EssentialÂTremor Patients. IEEE Transactions on Biomedical Engineering, 2021, 68, 1768-1776.	4.2	22
65	Human-Robot Interfaces in Exoskeletons for Gait Training after Stroke: State of the Art and Challenges. Applied Bionics and Biomechanics, 2012, 9, 193-203.	1.1	21
66	Analysis of the human interaction with a wearable lower-limb exoskeleton. Applied Bionics and Biomechanics, 2009, 6, 245-256.	1.1	20
67	Tibialis Anterior muscle coherence during controlled voluntary activation in patients with spinal cord injury: diagnostic potential for muscle strength, gait and spasticity. Journal of NeuroEngineering and Rehabilitation, 2014, 11, 23.	4.6	19
68	Voluntary and tremorogenic inputs to motor neuron pools of agonist/antagonist muscles in essential tremor patients. Journal of Neurophysiology, 2019, 122, 2043-2053.	1.8	19
69	Reorganization of Muscle Coordination Underlying Motor Learning in Cycling Tasks. Frontiers in Bioengineering and Biotechnology, 2020, 8, 800.	4.1	19
70	Haptic Adaptive Feedback to Promote Motor Learning With a Robotic Ankle Exoskeleton Integrated With a Video Game. Frontiers in Bioengineering and Biotechnology, 2020, 8, 113.	4.1	19
71	A Pilot Study of Brain-Triggered Electrical Stimulation with Visual Feedback in Patients with Incomplete Spinal Cord Injury. Journal of Medical and Biological Engineering, 2018, 38, 790-803.	1.8	18
72	Volition-adaptive control for gait training using wearable exoskeleton: preliminary tests with incomplete spinal cord injury individuals. Journal of NeuroEngineering and Rehabilitation, 2018, 15, 4.	4.6	18

#	Article	IF	CITATIONS
73	Witnessing a wearables transition. Science, 2019, 365, 636-637.	12.6	18
74	A novel motion tracking system for evaluation of functional rehabilitation of the upper limbs. Neural Regeneration Research, 2013, 8, 1773-82.	3.0	18
75	Human–Robot Cognitive Interaction. , 0, , 87-125.		17
76	Effects of gravity and kinematic constraints on muscle synergies in arm cycling. Journal of Neurophysiology, 2021, 125, 1367-1381.	1.8	17
77	Mechanical stress and electric potential in cymbal piezoceramics by FEA. Journal of the European Ceramic Society, 2005, 25, 2457-2461.	5.7	16
78	Analysis of the Human Interaction with a Wearable Lower-Limb Exoskeleton. Applied Bionics and Biomechanics, 2009, 6, 245-256.	1.1	16
79	Benchmarking lower limb wearable robots. , 2015, , .		16
80	A Variable Stiffness Actuator Module With Favorable Mass Distribution for a Bio-inspired Biped Robot. Frontiers in Neurorobotics, 2019, 13, 20.	2.8	16
81	Similarity of muscle synergies in human walking and cycling: Preliminary results. , 2013, 2013, 6933-6.		15
82	One central oscillatory drive is compatible with experimental motor unit behaviour in essential and Parkinsonian tremor. Journal of Neural Engineering, 2015, 12, 046019.	3.5	15
83	Intramuscular EMG-Driven Musculoskeletal Modelling: Towards Implanted Muscle Interfacing in Spinal Cord Injury Patients. IEEE Transactions on Biomedical Engineering, 2022, 69, 63-74.	4.2	15
84	Modelling of piezoelectric transducers applied to piezoelectric motors: a comparative study and new perspective. Sensors and Actuators A: Physical, 2004, 110, 336-343.	4.1	14
85	Self-tuned driving of piezoelectric actuators. Journal of the European Ceramic Society, 2007, 27, 4163-4167.	5.7	14
86	Automatic real-time monitoring and assessment of tremor parameters in the upper limb from orientation data. Frontiers in Neuroscience, 2014, 8, 221.	2.8	14
87	Exoskeletons for lower-limb rehabilitation. , 2018, , 89-99.		14
88	Parametrical optimisation of ultrasonic motors. Sensors and Actuators A: Physical, 2003, 107, 169-182.	4.1	13
89	Inertial Sensor Error Reduction through Calibration and Sensor Fusion. Sensors, 2016, 16, 235.	3.8	13
90	Boosting the traditional physiotherapist approach for stroke spasticity using a sensorized ankle foot orthosis: a pilot study. Topics in Stroke Rehabilitation, 2017, 24, 447-456.	1.9	13

#	Article	IF	CITATIONS
91	Longitudinal estimation of intramuscular Tibialis Anterior coherence during subacute spinal cord injury: relationship with neurophysiological, functional and clinical outcome measures. Journal of NeuroEngineering and Rehabilitation, 2017, 14, 58.	4.6	13
92	Benchmarking Human Likeness of Bipedal Robot Locomotion: State of the Art and Future Trends. Cognitive Systems Monographs, 2020, , 147-166.	0.1	13
93	Practical consideration of shear strain correction factor and Rayleigh damping in models of piezoelectric transducers. Sensors and Actuators A: Physical, 2004, 115, 202-208.	4.1	12
94	Kinematics and Dynamics of Wearable Robots. , 0, , 47-85.		12
95	Robotic Assistance of Human Motion Using Active-Backdrivability on a Geared Electromagnetic Motor. International Journal of Advanced Robotic Systems, 2016, 13, 40.	2.1	12
96	Global Kalman filter approaches to estimate absolute angles of lower limb segments. BioMedical Engineering OnLine, 2017, 16, 58.	2.7	12
97	Comparing Recalibration Strategies for Electroencephalography-Based Decoders of Movement Intention in Neurological Patients with Motor Disability. International Journal of Neural Systems, 2018, 28, 1750060.	5.2	12
98	EEG hyperscanning in motor rehabilitation: a position paper. Journal of NeuroEngineering and Rehabilitation, 2021, 18, 98.	4.6	12
99	Novel kinematic indices for quantifying upper limb ability and dexterity after cervical spinal cord injury. Medical and Biological Engineering and Computing, 2017, 55, 833-844.	2.8	11
100	An Adaptable Human-Like Gait Pattern Generator Derived From a Lower Limb Exoskeleton. Frontiers in Robotics and Al, 2019, 6, 36.	3.2	11
101	Non-invasive electrical stimulation of peripheral nerves for the management of tremor. Journal of the Neurological Sciences, 2022, 435, 120195.	0.6	11
102	Human-machine-human interaction in motor control and rehabilitation: a review. Journal of NeuroEngineering and Rehabilitation, 2021, 18, 183.	4.6	11
103	Afferent electrical stimulation during cycling improves spinal processing of sensorimotor function after incomplete spinal cord injury. NeuroRehabilitation, 2017, 40, 429-437.	1.3	10
104	Advanced Hybrid Technology for Neurorehabilitation: The HYPER Project. Intelligent Systems Reference Library, 2012, , 89-108.	1.2	9
105	Modulation of reciprocal inhibition at the wrist as a neurophysiological correlate of tremor suppression: a pilot healthy subject study. , 2019, 2019, 6267-6272.		9
106	Women with patellofemoral pain show altered motor coordination during lateral step down. Journal of Biomechanics, 2020, 110, 109981.	2.1	9
107	On the use of inertial measurement units for real-time quantification of pathological tremor amplitude and frequency. Procedia Chemistry, 2009, 1, 1219-1222.	0.7	8
108	Comparison of Intramuscular and Surface Electromyography Recordings Towards the Control of Wearable Robots for Incomplete Spinal Cord Injury Rehabilitation. , 2020, , .		8

#	Article	IF	CITATIONS
109	Biomechanical loading as an alternative treatment for tremor: a review of two approaches. Tremor and Other Hyperkinetic Movements, 2012, 2, .	2.0	8
110	Comparative biomechanical analysis of gait in patients with central cord and Brown-Séquard syndrome. Disability and Rehabilitation, 2013, 35, 1869-1876.	1.8	7
111	Maintenance of cutaneomuscular neuronal excitability after leg-cycling predicts lower limb muscle strength after incomplete spinal cord injury. Clinical Neurophysiology, 2016, 127, 2402-2409.	1.5	7
112	Motor Unit-Driven Identification of Pathological Tremor in Electroencephalograms. Frontiers in Neurology, 2018, 9, 879.	2.4	7
113	From the State of the Art of Assessment Metrics Toward Novel Concepts for Humanoid Robot Locomotion Benchmarking. IEEE Robotics and Automation Letters, 2020, 5, 914-920.	5.1	7
114	Online Tracking of the Phase Difference Between Neural Drives to Antagonist Muscle Pairs in Essential Tremor Patients. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 709-718.	4.9	7
115	Coupled control of human-exoskeleton systems: An adaptative process. , 2008, , .		6
116	Novel kinematic indices for quantifying movement agility and smoothness after cervical Spinal Cord Injury. NeuroRehabilitation, 2016, 38, 199-209.	1.3	5
117	HYBRID: Ambulatory Robotic Gait Trainer with Movement Induction and Partial Weight Support. Sensors, 2019, 19, 4773.	3.8	5
118	Noninvasive Modalities Used in Spinal Cord Injury Rehabilitation. , 0, , .		5
119	A Framework for Dyadic Physical Interaction Studies During Ankle Motor Tasks. IEEE Robotics and Automation Letters, 2021, 6, 6876-6883.	5.1	5
120	Joint Stiffness Tuning of Exoskeleton Robot H2 by Tacit Learning. Lecture Notes in Computer Science, 2015, , 138-144.	1.3	5
121	A new adaptive filter and quality evaluation index for image restoration. Pattern Recognition, 2001, 34, 457-467.	8.1	4
122	Detection of the Onset of Voluntary Movements Based on the Combination of ERD and BP Cortical Patterns. Biosystems and Biorobotics, 2014, , 437-446.	0.3	4
123	Combining a hybrid robotic system with a bain-machine interface for the rehabilitation of reaching movements: A case study with a stroke patient. , 2016, 2016, 6381-6384.		4
124	Detection of Subject's Intention to Trigger Transitions Between Sit, Stand and Walk with a Lower Limb Exoskeleton. Biosystems and Biorobotics, 2017, , 249-253.	0.3	4
125	Biomedical instrumentation based on piezoelectric ceramics. Journal of the European Ceramic Society, 2007, 27, 4191-4194.	5.7	3
126	A Review of fMRI as a Tool for Enhancing Eeg-Based Brain-Machine Interfaces. Applied Bionics and Biomechanics, 2012, 9, 125-133.	1.1	3

#	Article	IF	CITATIONS
127	A dynamically consistent model of a motorized ankle-foot orthosis. , 2013, , .		3
128	Research highlights in neurorehabilitation. Journal of NeuroEngineering and Rehabilitation, 2014, 11, 21.	4.6	3
129	Sliding mode control for functional electrical stimulation of a musculoskeletal model. , 2017, , .		3
130	Neural Control of Muscles in Tremor Patients. Biosystems and Biorobotics, 2017, , 129-134.	0.3	3
131	Assessing sensorimotor excitability after spinal cord injury: a reflex testing method based on cycling with afferent stimulation. Medical and Biological Engineering and Computing, 2018, 56, 1425-1434.	2.8	3
132	Theoretical approach for designing the rehabilitation robot controller. Advanced Robotics, 2019, 33, 674-686.	1.8	3
133	Bringing inclusivity to robotics with INBOTS. Nature Machine Intelligence, 2019, 1, 164-164.	16.0	3
134	Physiological Evaluation of Different Control Modes of Lower Limb Robotic Exoskeleton H2 in Patients with Incomplete Spinal Cord Injury. Biosystems and Biorobotics, 2017, , 343-348.	0.3	3
135	Empowering the autonomy of children with cognitive and physical impairments by inertial head tracking. Procedia Chemistry, 2009, 1, 726-729.	0.7	2
136	The Rehabot-Knee Project Approach for Recovery of Neuromuscular Control of the Knee With Controllable Braces. International Journal of Rehabilitation Research, 2009, 32, S112.	1.3	2
137	Introduction: Exoskeletons in Rehabilitation Robotics. Springer Tracts in Advanced Robotics, 2011, , 1-20.	0.4	2
138	Flexible and large area pressure sensors for human-neuroprostheses and human-neurorobotic interface assessment. Microsystem Technologies, 2012, 18, 1155-1161.	2.0	2
139	An embedded system for an EEG based BCI. , 2013, , .		2
140	Implementation of feature extraction methods and support vector machine for classification of partial body weight supports in overground robot-aided walking. , 2015, , .		2
141	Joint stiffness modulation of compliant actuators for lower limb exoskeletons. , 2017, 2017, 1287-1292.		2
142	Exoskeletons for Over-Ground Gait Training in Spinal Cord Injury. Biosystems and Biorobotics, 2018, , 253-265.	0.3	2
143	Knee Muscle Fatigue Estimation during Isometric Artificially Elicited Contractions in Incomplete Spinal Cord Injured Subjects. Biosystems and Biorobotics, 2013, , 327-332.	0.3	2
144	Upper Limb Exoskeleton for Tremor Suppression: Validation. Springer Tracts in Advanced Robotics, 2011, , 99-111.	0.4	2

#	Article	IF	CITATIONS
145	Communication Networks for Wearable Robots. , 0, , 201-234.		1
146	Wearable Lower Limb and Full-Body Robots. , 0, , 283-321.		1
147	Neural decoding of robot-assisted gait during rehabilitation after stroke. , 2017, , .		1
148	Tacit adaptability on submaximal force control for ankle robotic training. , 2019, , .		1
149	Fatigue Compensating Muscle Excitability Enhancement by Transcranial Magnetic Stimulation: A Case Report. Biosystems and Biorobotics, 2019, , 839-843.	0.3	1
150	Feasibility of Submaximal Force Control Training for Robot–Mediated Therapy After Stroke. Biosystems and Biorobotics, 2019, , 256-260.	0.3	1
151	A Biomechanical Model for the Validation of Modular Control in Balance. Biosystems and Biorobotics, 2013, , 815-819.	0.3	1
152	Robotic Platform with Visual Paradigm to Induce Motor Learning in Healthy Subjects. Advances in Intelligent Systems and Computing, 2018, , 569-579.	0.6	1
153	Wearable Upper Limb Robots. , 0, , 235-281.		0
154	Guest Editorial: Special Issue on Multimodal Human - Robot Interfaces. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, 2012, 42, 1140-1141.	2.9	0
155	Muscle Synergies: A Compact Way to Describe and Restore Neuromuscular Coordination. Biosystems and Biorobotics, 2017, , 1403-1407.	0.3	0
156	Usability of the Combination of Brain-Computer Interface, Functional Electrical Stimulation and Virtual Reality for Improving Hand Function in Spinal Cord Injured Patients. Biosystems and Biorobotics, 2017, , 331-335.	0.3	0
157	Lower Limb Exoskeletons in Latin-America. Biosystems and Biorobotics, 2019, , 206-209.	0.3	0
158	Upper Limb Exoskeleton for Tremor Suppression: Physical HR Interaction. Springer Tracts in Advanced Robotics, 2011, , 67-98.	0.4	0
159	Virtual Reality and Hybrid Technology for Neurorehabilitations. Lecture Notes in Computer Science, 2011, , 582-591.	1.3	0
160	Tremor Suppression Using Electromyography and Surface Sensory Electrical Stimulation. Biosystems and Biorobotics, 2013, , 539-543.	0.3	0
161	Proposal for Clinical Validation of Lower Limb Robotic Exoskeleton in Patients with Incomplete Spinal Cord Injury. Biosystems and Biorobotics, 2017, , 1439-1443.	0.3	0