
Thanasis Triantafillou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7306601/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Innovative and Eco-friendly Solutions for the Seismic Retrofitting of Natural Stone Masonry Walls with Textile Reinforced Mortar: In- and Out-of-Plane Behavior. Journal of Composites for Construction, 2022, 26, .	1.7	9
2	Integrated Seismic and Energy Retrofitting System Using Textile-Reinforced Mortars Combined with Thermal Insulation. Lecture Notes in Civil Engineering, 2022, , 3-18.	0.3	3
3	Tensile Performance of Textile-Reinforced Concrete after Fire Exposure: Experimental Investigation and Analytical Approach. Journal of Composites for Construction, 2022, 26, .	1.7	13
4	Seismic Behavior of Repaired and Externally FRP-Jacketed Short Columns Built with Extremely Low-Strength Concrete. Journal of Composites for Construction, 2022, 26, .	1.7	16
5	Vulnerability assessment of an innovative precast concrete sandwich panel subjected to the ISO 834 fire. Journal of Building Engineering, 2022, 52, 104479.	1.6	4
6	Optimal Design of Ferronickel Slag Alkali-Activated Material for High Thermal Load Applications Developed by Design of Experiment. Materials, 2022, 15, 4379.	1.3	7
7	State-of-the-Art Review on Experimental Investigations of Textile-Reinforced Concrete Exposed to High Temperatures. Journal of Composites Science, 2021, 5, 290.	1.4	9
8	Integrated Structural and Energy Retrofitting of Masonry Walls: Effect of In-Plane Damage on the Out-of-Plane Response. Journal of Composites for Construction, 2020, 24, .	1.7	24
9	Integrated Seismic and Energy Retrofitting System for Masonry Walls Using Textile-Reinforced Mortars Combined with Thermal Insulation: Experimental, Analytical, and Numerical Study. Journal of Composites Science, 2020, 4, 189.	1.4	13
10	Thermomechanical Behavior of Textile Reinforced Cementitious Composites Subjected to Fire. Applied Sciences (Switzerland), 2019, 9, 747.	1.3	27
11	Preliminary High-Temperature Tests of Textile Reinforced Concrete (TRC). Proceedings (mdpi), 2018, 2, 522.	0.2	3
12	An Innovative Structural and Energy Retrofitting System for Masonry Walls Using Textile Reinforced Mortars Combined with Thermal Insulation. RILEM Bookseries, 2018, , 752-761.	0.2	6
13	fib Report on Design of Concrete Members Strengthened with Externally Applied Reinforcement. , 2018, , 1592-1600.		0
14	An innovative structural and energy retrofitting system for URM walls using textile reinforced mortars combined with thermal insulation: Mechanical and fire behavior. Construction and Building Materials, 2017, 133, 1-13.	3.2	77
15	Analysis-oriented model for concrete and masonry confined with fiber reinforced mortar. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	1.3	46
16	Shear strengthening of reinforced concrete T-beams under cyclic loading with TRM or FRP jackets. Materials and Structures/Materiaux Et Constructions, 2016, 49, 17-28.	1.3	91
17	Accuracy of designâ€oriented formulations for evaluating the flexural and shear capacities of FRPâ€strengthened RC beams. Structural Concrete, 2016, 17, 425-442.	1.5	40
18	Recommendation of RILEM TC 232-TDT: test methods and design of textile reinforced concrete. Materials and Structures/Materiaux Et Constructions, 2016, 49, 4923-4927.	1.3	171

THANASIS TRIANTAFILLOU

#	Article	IF	CITATIONS
19	Background to the European seismic design provisions for retrofitting RC elements using FRP materials. Structural Concrete, 2016, 17, 194-219.	1.5	24
20	FRP confinement of wall-like reinforced concrete columns. Materials and Structures/Materiaux Et Constructions, 2016, 49, 651-664.	1.3	37
21	NSM Systems. RILEM State-of-the-Art Reports, 2016, , 303-348.	0.3	13
22	Increase of load-carrying capacity of masonry with textile reinforced rendering / Erhöhung der Tragfäigkeit von Mauerwerk mit textilbewehrtem Putz. Mauerwerk, 2015, 19, 40-51.	0.2	3
23	A passive control methodology for seismic safety enhancement of monumental structures. , 2015, , .		2
24	Seismic protection of monuments using particle dampers in multi-drum columns. Soil Dynamics and Earthquake Engineering, 2015, 77, 360-368.	1.9	28
25	Damage detection of reinforced concrete columns retrofitted with FRP jackets by using PZT sensors. Structural Monitoring and Maintenance, 2015, 2, 165-180.	1.7	9
26	Bond Strength of Lap Splices in FRP and TRM Confined Concrete: Behavior and Design. Geotechnical, Geological and Earthquake Engineering, 2014, , 203-219.	0.1	0
27	Innovative Applications of Textile-Based Composites in Strengthening and Seismic Retrofitting as Well as in the Prefabrication of New Structures. Advanced Materials Research, 2013, 639-640, 26-41.	0.3	17
28	Fibreâ€reinforced polymer reinforcement enters <i>fib</i> Model Code 2010. Structural Concrete, 2013, 14, 335-341.	1.5	13
29	Use of Anchors in Shear Strengthening of Reinforced Concrete T-Beams with FRP. Journal of Composites for Construction, 2013, 17, 101-107.	1.7	104
30	Round Robin Test for composite-to-brick shear bond characterization. Materials and Structures/Materiaux Et Constructions, 2012, 45, 1761-1791.	1.3	172
31	Influence of the design materials on the mechanical and physical properties of repair mortars of historic buildings. Materials and Structures/Materiaux Et Constructions, 2011, 44, 1671-1685.	1.3	9
32	Bar Buckling in RC Columns Confined with Composite Materials. Journal of Composites for Construction, 2011, 15, 393-403.	1.7	64
33	Externally bonded grids as strengthening and seismic retrofitting materials of masonry panels. Construction and Building Materials, 2011, 25, 504-514.	3.2	205
34	Bond Strength of Lap-Spliced Bars in Concrete Confined with Composite Jackets. Journal of Composites for Construction, 2011, 15, 156-167.	1.7	67
35	Innovative Seismic Retrofitting of RC Columns Using Advanced Composites. Geotechnical, Geological and Earthquake Engineering, 2010, , 383-393.	0.1	Ο
36	Textile-Reinforced Mortar versus FRP Jacketing in Seismic Retrofitting of RC Columns with Continuous or Lap-Spliced Deformed Bars. Journal of Composites for Construction, 2009, 13, 360-371.	1.7	115

#	Article	IF	CITATIONS
37	Textile-reinforced mortar (TRM) versus FRP as strengthening material of URM walls: in-plane cyclic loading. Materials and Structures/Materiaux Et Constructions, 2007, 40, 1081-1097.	1.3	313
38	Experimental Investigation of Nonconventional Confinement for Concrete Using FRP. Journal of Composites for Construction, 2005, 9, 480-487.	1.7	56
39	A field deployable, multiplexed Bragg grating sensor system used in an extensive highway bridge monitoring evaluation tests. IEEE Sensors Journal, 2005, 5, 510-519.	2.4	51
40	Masonry Confinement with Fiber-Reinforced Polymers. Journal of Composites for Construction, 2005, 9, 128-135.	1.7	128
41	Computer-aided strengthening of masonry walls using fibre-reinforced polymer strips. Materials and Structures/Materiaux Et Constructions, 2005, 38, 93-98.	1.3	3
42	Experimental Investigation of FRP-Strengthened RC Beam-Column Joints. Journal of Composites for Construction, 2003, 7, 39-49.	1.7	296
43	Analysis of FRP-Strengthened RC Beam-Column Joints. Journal of Composites for Construction, 2002, 6, 41-51.	1.7	91
44	Fiber-Reinforced Polymer Composites for Construction—State-of-the-Art Review. Journal of Composites for Construction, 2002, 6, 73-87.	1.7	1,370
45	Minimum cost design of concrete sandwich panels made of HPC faces and PAC core: the case of in-plane loading. Structural Concrete, 2002, 3, 167-181.	1.5	0
46	Seismic retrofitting of structures with fibre-reinforced polymers. Structural Control and Health Monitoring, 2001, 3, 57-65.	0.7	25
47	Design of Concrete Flexural Members Strengthened in Shear with FRP. Journal of Composites for Construction, 2000, 4, 198-205.	1.7	304
48	Strengthening of structures with advanced FRPs. Structural Control and Health Monitoring, 1998, 1, 126-134.	0.7	40
49	Composites: a new possibility for the shear strengthening of concrete, masonry and wood. Composites Science and Technology, 1998, 58, 1285-1295.	3.8	99
50	Shear Reinforcement of Wood Using FRP Materials. Journal of Materials in Civil Engineering, 1997, 9, 65-69.	1.3	92
51	Numerical study of anchors for composite prestressing straps. Composite Structures, 1996, 35, 323-330.	3.1	3
52	Creep Behavior of FRP-Reinforced Wood Members. Journal of Structural Engineering, 1995, 121, 174-186.	1.7	52
53	Innovative Design of FRP Combined with Concrete: Long-Term Behavior. Journal of Structural Engineering, 1995, 121, 1079-1089.	1.7	31
54	Reliability of RC Members Strengthened with CFRP Laminates. Journal of Structural Engineering, 1995, 121. 1037-1044.	1.7	92

THANASIS TRIANTAFILLOU

#	Article	IF	CITATIONS
55	Timeâ€Dependent Behavior of RC Members Strengthened with FRP Laminates. Journal of Structural Engineering, 1994, 120, 1016-1042.	1.7	77
56	Fracture Mechanics Approach for Failure of Concrete Shear Key. I: Theory. Journal of Engineering Mechanics - ASCE, 1993, 119, 681-700.	1.6	53
57	Fracture Mechanics Approach for Failure of Concrete Shear Key. II: Verification. Journal of Engineering Mechanics - ASCE, 1993, 119, 701-719.	1.6	29
58	Prestressed FRP Sheets as External Reinforcement of Wood Members. Journal of Structural Engineering, 1992, 118, 1270-1284.	1.7	119
59	FRPâ€Reinforced Wood as Structural Material. Journal of Materials in Civil Engineering, 1992, 4, 300-317.	1.3	175
60	Optimization of hybrid aluminum/cfrp box beams. International Journal of Mechanical Sciences, 1991, 33, 729-739.	3.6	15
61	Innovative Prestressing with FRP Sheets: Mechanics of Shortâ€Term Behavior. Journal of Engineering Mechanics - ASCE, 1991, 117, 1652-1672.	1.6	112
62	Multiaxial failure criteria for brittle foams. International Journal of Mechanical Sciences, 1990, 32, 479-496.	3.6	46
63	Constitutive Modeling of Elasticâ€Plastic Openâ€Cell Foams. Journal of Engineering Mechanics - ASCE, 1990, 116, 2772-2778.	1.6	31
64	Failure surfaces for cellular materials under multiaxial loads—I.Modelling. International Journal of Mechanical Sciences, 1989, 31, 635-663.	3.6	327
65	Failure surfaces for cellular materials under multiaxial loads—II. Comparison of models with experiment. International Journal of Mechanical Sciences, 1989, 31, 665-678.	3.6	176
66	Failure mode maps for foam core sandwich beams. Materials Science and Engineering, 1987, 95, 37-53.	0.1	172
67	Minimum weight design of foam core sandwich panels for a given strength. Materials Science and Engineering, 1987, 95, 55-62.	0.1	51
68	ÂÂÂMechanical behavior of textile reinforced alkali-activated mortar based on fly ash, metakaolin and ladle furnace slag. Open Research Europe, 0, 2, 79.	2.0	3