Saikiran Rapaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/730624/publications.pdf

Version: 2024-02-01

33 papers

1,449 citations

15 h-index 24 g-index

34 all docs

34 docs citations

times ranked

34

1709 citing authors

#	Article	IF	CITATIONS
1	A machine-learning approach for computation of fractional flow reserve from coronary computed tomography. Journal of Applied Physiology, 2016, 121, 42-52.	1.2	288
2	Diagnostic Accuracy of a Machine-Learning Approach to Coronary Computed Tomographic Angiography–Based Fractional Flow Reserve. Circulation: Cardiovascular Imaging, 2018, 11, e007217.	1.3	280
3	Coronary CT Angiography–derived Fractional Flow Reserve: Machine Learning Algorithm versus Computational Fluid Dynamics Modeling. Radiology, 2018, 288, 64-72.	3.6	165
4	Flow patterns in the sedimentation of an elliptical particle. Journal of Fluid Mechanics, 2009, 625, 249-272.	1.4	137
5	Non-modal growth of perturbations in density-driven convection in porous media. Journal of Fluid Mechanics, 2008, 609, 285-303.	1.4	104
6	Real-World Variability in the Prediction of Intracranial Aneurysm Wall Shear Stress: The 2015 International Aneurysm CFD Challenge. Cardiovascular Engineering and Technology, 2018, 9, 544-564.	0.7	78
7	Onset of convection over a transient base-state in anisotropic and layered porous media. Journal of Fluid Mechanics, 2009, 641, 227-244.	1.4	65
8	Evaluation of a Deep Learning–Based Automated CT Coronary Artery Calcium Scoring Algorithm. JACC: Cardiovascular Imaging, 2020, 13, 524-526.	2.3	47
9	Data-driven estimation of cardiac electrical diffusivity from 12-lead ECG signals. Medical Image Analysis, 2014, 18, 1361-1376.	7.0	42
10	Efficient Lattice Boltzmann Solver for Patient-Specific Radiofrequency Ablation of Hepatic Tumors. IEEE Transactions on Medical Imaging, 2015, 34, 1576-1589.	5.4	41
11	Rupture Risk of Small Unruptured Intracranial Aneurysms in Japanese Adults. Stroke, 2020, 51, 641-643.	1.0	33
12	Automatic coronary calcium scoring in chest CT using a deep neural network in direct comparison with non-contrast cardiac CT: A validation study. European Journal of Radiology, 2021, 134, 109428.	1.2	32
13	Machine Learning and Coronary Artery Calcium Scoring. Current Cardiology Reports, 2020, 22, 90.	1.3	26
14	Coronary Centerline Extraction via Optimal Flow Paths and CNN Path Pruning. Lecture Notes in Computer Science, 2016, , 317-325.	1.0	23
15	Deep learning for vessel-specific coronary artery calcium scoring: validation on a multi-centre dataset. European Heart Journal Cardiovascular Imaging, 2022, 23, 846-854.	0.5	19
16	Prediction of Patient Management in COVID-19 Using Deep Learning-Based Fully Automated Extraction of Cardiothoracic CT Metrics and Laboratory Findings. Korean Journal of Radiology, 2021, 22, 994.	1.5	14
17	Comprehensive preclinical evaluation of a multi-physics model of liver tumor radiofrequency ablation. International Journal of Computer Assisted Radiology and Surgery, 2017, 12, 1543-1559.	1.7	12
18	Lattice Boltzmann Method for Fast Patient-Specific Simulation of Liver Tumor Ablation from CT Images. Lecture Notes in Computer Science, 2013, 16, 323-330.	1.0	10

#	Article	IF	CITATIONS
19	Parameter Estimation for Personalization of Liver Tumor Radiofrequency Ablation. Lecture Notes in Computer Science, 2014, , 3-12.	1.0	7
20	An Automated Workflow for Hemodynamic Computations in Cerebral Aneurysms. Computational and Mathematical Methods in Medicine, 2020, 2020, 1-20.	0.7	4
21	From Medical Images to Fast Computational Models of Heart Electromechanics: An Integrated Framework towards Clinical Use. Lecture Notes in Computer Science, 2013, , 249-258.	1.0	4
22	Model-Based Estimation of 4D Relative Pressure Map from 4D Flow MR Images. Lecture Notes in Computer Science, 2014, , 236-243.	1.0	4
23	Verification of a research prototype for hemodynamic analysis of cerebral aneurysms. , 2016, 2016, 2921-2924.		3
24	GPU-accelerated model for fast, three-dimensional fluid-structure interaction computations. , 2015, 2015, 965-8.		2
25	Personalized Pre- and Post-Operative Hemodynamic Assessment of Aortic Coarctation from 3D Rotational Angiography. Cardiovascular Engineering and Technology, 2022, 13, 14-40.	0.7	2
26	Data-driven computational models of heart anatomy, mechanics and hemodynamics: An integrated framework. , 2012 , , .		1
27	GPU accelerated, robust method for voxelization of solid objects. , 2016, , .		1
28	Challenges to Validate Multi-Physics Model of Liver Tumor Radiofrequency Ablation from Pre-clinical Data., 2016,, 27-38.		1
29	Additional clinical applications. , 2020, , 183-210.		1
30	Implementation of a patient-specific cardiac model. , 2020, , 43-94.		1
31	Normalizing Flows for Out-of-Distribution Detection: Application to Coronary Artery Segmentation. Applied Sciences (Switzerland), 2022, 12, 3839.	1.3	1
32	Reply to Liu et al Journal of Applied Physiology, 2018, 125, 1353-1353.	1.2	0
33	A Framework for the Pre-clinical Validation of LBM-EP for the Planning and Guidance of Ventricular Tachycardia Ablation. Lecture Notes in Computer Science, 2014, , 253-261.	1.0	0