Zhen Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7306072/publications.pdf Version: 2024-02-01

ΖΗΕΝ ΧΙΙ

#	Article	IF	CITATIONS
1	Controlled Ultrasound Tissue Erosion. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51, 726-736.	1.7	269
2	Probability of Cavitation for Single Ultrasound Pulses Applied to Tissues and Tissue-Mimicking Materials. Ultrasound in Medicine and Biology, 2013, 39, 449-465.	0.7	240
3	Histotripsy methods in mechanical disintegration of tissue: Towards clinical applications. International Journal of Hyperthermia, 2015, 31, 145-162.	1.1	216
4	Noninvasive Thrombolysis Using Pulsed Ultrasound Cavitation Therapy – Histotripsy. Ultrasound in Medicine and Biology, 2009, 35, 1982-1994.	0.7	203
5	Controlled ultrasound tissue erosion: The role of dynamic interaction between insonation and microbubble activity. Journal of the Acoustical Society of America, 2005, 117, 424-435.	0.5	177
6	Noninvasive Treatment of Deep Venous Thrombosis Using Pulsed Ultrasound Cavitation Therapy (Histotripsy) in a Porcine Model. Journal of Vascular and Interventional Radiology, 2011, 22, 369-377.	0.2	142
7	Image-Guided Non-Invasive Ultrasound Liver Ablation Using Histotripsy: Feasibility Study in an InÂVivo Porcine Model. Ultrasound in Medicine and Biology, 2013, 39, 1398-1409.	0.7	134
8	Effects of Ultrasound Frequency and Tissue Stiffness on the Histotripsy Intrinsic Threshold for Cavitation. Ultrasound in Medicine and Biology, 2015, 41, 1651-1667.	0.7	128
9	Histotripsy: the first noninvasive, non-ionizing, non-thermal ablation technique based on ultrasound. International Journal of Hyperthermia, 2021, 38, 561-575.	1.1	122
10	Histotripsy beyond the intrinsic cavitation threshold using very short ultrasound pulses: microtripsy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61, 251-265.	1.7	120
11	Effects of tissue mechanical properties on susceptibility to histotripsy-induced tissue damage. Physics in Medicine and Biology, 2014, 59, 253-270.	1.6	114
12	Effects of acoustic parameters on bubble cloud dynamics in ultrasound tissue erosion (histotripsy). Journal of the Acoustical Society of America, 2007, 122, 229-236.	0.5	109
13	Noninvasive Creation of an Atrial Septal Defect by Histotripsy in a Canine Model. Circulation, 2010, 121, 742-749.	1.6	108
14	A Tissue Phantom for Visualization and Measurement of Ultrasound-Induced Cavitation Damage. Ultrasound in Medicine and Biology, 2010, 36, 2132-2143.	0.7	105
15	Histotripsy-induced cavitation cloud initiation thresholds in tissues of different mechanical properties. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61, 341-352.	1.7	102
16	An Efficient Treatment Strategy for Histotripsy by Removing Cavitation Memory. Ultrasound in Medicine and Biology, 2012, 38, 753-766.	0.7	100
17	High Speed Imaging of Bubble Clouds Generated in Pulsed Ultrasound Cavitational Therapy - Histotripsy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54, 2091-2101.	1.7	99
18	Non-thermal histotripsy tumor ablation promotes abscopal immune responses that enhance cancer immunotherapy. , 2020, 8, e000200.		99

Zhen Xu

#	Article	IF	CITATIONS
19	Effects of tissue stiffness, ultrasound frequency, and pressure on histotripsy-induced cavitation bubble behavior. Physics in Medicine and Biology, 2015, 60, 2271-2292.	1.6	95
20	Investigation of intensity thresholds for ultrasound tissue erosion. Ultrasound in Medicine and Biology, 2005, 31, 1673-1682.	0.7	89
21	Focused ultrasound: tumour ablation and its potential to enhance immunological therapy to cancer. British Journal of Radiology, 2018, 91, 20170641.	1.0	84
22	Visualizing the Histotripsy Process: Bubble Cloud–Cancer Cell Interactions in a Tissue-Mimicking Environment. Ultrasound in Medicine and Biology, 2016, 42, 2466-2477.	0.7	82
23	Evolution of bubble clouds induced by pulsed cavitational ultrasound therapy - Histotripsy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55, 1122-1132.	1.7	78
24	Nanodroplet-Mediated Histotripsy for Image-guided Targeted Ultrasound Cell Ablation. Theranostics, 2013, 3, 851-864.	4.6	78
25	Histotripsy of the Prostate: Dose Effects in a Chronic Canine Model. Urology, 2009, 74, 932-937.	0.5	75
26	Quantitative ultrasound backscatter for pulsed cavitational ultrasound therapy-histotripsy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56, 995-1005.	1.7	71
27	Optical and acoustic monitoring of bubble cloud dynamics at a tissue-fluid interface in ultrasound tissue erosion. Journal of the Acoustical Society of America, 2007, 121, 2421-2430.	0.5	70
28	Histotripsy Fractionation of Prostate Tissue: Local Effects and Systemic Response in a Canine Model. Journal of Urology, 2011, 185, 1484-1489.	0.2	63
29	Size Measurement of Tissue Debris Particles Generated from Pulsed Ultrasound Cavitational Therapy – Histotripsy. Ultrasound in Medicine and Biology, 2009, 35, 245-255.	0.7	62
30	Noninvasive thrombolysis using histotripsy beyond the intrinsic threshold (microtripsy). IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62, 1342-1355.	1.7	53
31	Predicting Tissue Susceptibility to Mechanical Cavitation Damage in Therapeutic Ultrasound. Ultrasound in Medicine and Biology, 2017, 43, 1421-1440.	0.7	50
32	Histotripsy Thrombolysis on Retracted Clots. Ultrasound in Medicine and Biology, 2016, 42, 1903-1918.	0.7	49
33	Non-Invasive Ultrasound Liver Ablation Using Histotripsy: Chronic Study in an InÂVivo Rodent Model. Ultrasound in Medicine and Biology, 2016, 42, 1890-1902.	0.7	47
34	A new strategy to enhance cavitational tissue erosion using a high-intensity, initiating sequence. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 1412-1424.	1.7	46
35	Rapid prototyping fabrication of focused ultrasound transducers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61, 1559-1574.	1.7	45
36	Non-Invasive Thrombolysis Using Microtripsy in a Porcine Deep Vein Thrombosis Model. Ultrasound in Medicine and Biology, 2017, 43, 1378-1390.	0.7	45

Zhen Xu

#	Article	IF	CITATIONS
37	Non-Invasive Liver Ablation Using Histotripsy: Preclinical Safety Study in an InÂVivo Porcine Model. Ultrasound in Medicine and Biology, 2017, 43, 1237-1251.	0.7	45
38	Targeted Lesion Generation Through the Skull Without Aberration Correction Using Histotripsy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2016, 63, 671-682.	1.7	44
39	Therapeutic ultrasound to noninvasively create intracardiac communications in an intact animal model. Catheterization and Cardiovascular Interventions, 2011, 77, 580-588.	0.7	43
40	In vivo histotripsy brain treatment. Journal of Neurosurgery, 2019, 131, 1331-1338.	0.9	43
41	Effects of <i>f</i> -number on the histotripsy intrinsic threshold and cavitation bubble cloud behavior. Physics in Medicine and Biology, 2017, 62, 1269-1290.	1.6	42
42	Polyvinyl chloride as a multimodal tissueâ€mimicking material with tuned mechanical and medical imaging properties. Medical Physics, 2016, 43, 5577-5592.	1.6	41
43	Modeling tissue-selective cavitation damage. Physics in Medicine and Biology, 2019, 64, 225001.	1.6	41
44	Nanodroplet-mediated catheter-directed sonothrombolysis of retracted blood clots. Microsystems and Nanoengineering, 2021, 7, 3.	3.4	41
45	Effects of Temperature on the Histotripsy Intrinsic Threshold for Cavitation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2016, 63, 1064-1077.	1.7	39
46	Effects of Ultrasound Frequency on Nanodroplet-Mediated Histotripsy. Ultrasound in Medicine and Biology, 2015, 41, 2135-2147.	0.7	38
47	A Comparison of Sonothrombolysis in Aged Clots between Low-Boiling-Point Phase-Change Nanodroplets and Microbubbles of the Same Composition. Ultrasound in Medicine and Biology, 2020, 46, 3059-3068.	0.7	38
48	Transcranial histotripsy therapy: a feasibility study. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61, 582-593.	1.7	37
49	Non-invasive, Rapid Ablation of Tissue Volume Using Histotripsy. Ultrasound in Medicine and Biology, 2017, 43, 2834-2847.	0.7	32
50	Prostate Histotripsy in an Anticoagulated Model. Urology, 2010, 75, 207-211.	0.5	30
51	Noninvasive thrombolysis using microtripsy: a parameter study. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62, 2092-2105.	1.7	30
52	Dual-beam histotripsy: a low-frequency pump enabling a high-frequency probe for precise lesion formation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61, 325-340.	1.7	29
53	Comparative study of the dynamics of laser and acoustically generated bubbles in viscoelastic media. Physical Review E, 2019, 99, 043103.	0.8	29
54	Effects of Histotripsy on Local Tumor Progression in an <i>in vivo</i> Orthotopic Rodent Liver Tumor Model. BME Frontiers, 2020, 2020, .	2.2	28

#	Article	IF	CITATIONS
55	The role of positive and negative pressure on cavitation nucleation in nanodroplet-mediated histotripsy. Physics in Medicine and Biology, 2016, 61, 663-682.	1.6	27
56	Effect of Frequency and Focal Spacing on Transcranial Histotripsy Clot Liquefaction, Using Electronic Focal Steering. Ultrasound in Medicine and Biology, 2017, 43, 2302-2317.	0.7	27
57	Real-Time Feedback of Histotripsy Thrombolysis Using Bubble-Induced Color Doppler. Ultrasound in Medicine and Biology, 2015, 41, 1386-1401.	0.7	26
58	Robotically Assisted Sonic Therapy (RAST) for Noninvasive Hepatic Ablation in a Porcine Model: Mitigation of Body Wall Damage with a Modified Pulse Sequence. CardioVascular and Interventional Radiology, 2019, 42, 1016-1023.	0.9	26
59	Noninvasive Ablation of Prostate Cancer Spheroids Using Acoustically-Activated Nanodroplets. Molecular Pharmaceutics, 2016, 13, 4054-4065.	2.3	25
60	Real-Time Transcranial Histotripsy Treatment Localization and Mapping Using Acoustic Cavitation Emission Feedback. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 1178-1191.	1.7	25
61	Robotically-Assisted Sonic Therapy for Renal Ablation in a Live Porcine Model: Initial Preclinical Results. Journal of Vascular and Interventional Radiology, 2019, 30, 1293-1302.	0.2	24
62	Histotripsy Clot Liquefaction in a Porcine Intracerebral Hemorrhage Model. Neurosurgery, 2020, 86, 429-436.	0.6	24
63	Histotripsy for Non-Invasive Ablation of Hepatocellular Carcinoma (HCC) Tumor in a Subcutaneous Xenograft Murine Model. , 2018, 2018, 6064-6067.		23
64	Dual-Frequency Intravascular Sonothrombolysis: An <i>In Vitro</i> Study. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 3599-3607.	1.7	23
65	Effects of Droplet Composition on Nanodroplet-Mediated Histotripsy. Ultrasound in Medicine and Biology, 2016, 42, 931-946.	0.7	22
66	Development of Nanodroplets for Histotripsy-Mediated Cell Ablation. Molecular Pharmaceutics, 2014, 11, 3684-3695.	2.3	20
67	Single–bubble dynamics in histotripsy and high–amplitude ultrasound: Modeling and validation. Physics in Medicine and Biology, 2020, 65, 225014.	1.6	20
68	Effects of Thermal Preconditioning on Tissue Susceptibility to Histotripsy. Ultrasound in Medicine and Biology, 2015, 41, 2938-2954.	0.7	19
69	Soft-Tissue Aberration Correction for Histotripsy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 2073-2085.	1.7	19
70	Examining the Influence of Low-Dose Tissue Plasminogen Activator on Microbubble-Mediated Forward-Viewing Intravascular Sonothrombolysis. Ultrasound in Medicine and Biology, 2020, 46, 1698-1706.	0.7	19
71	Transcranial MR-Guided Histotripsy System. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 2917-2929.	1.7	19
72	Impact of Histotripsy on Development of Intrahepatic Metastases in a Rodent Liver Tumor Model. Cancers, 2022, 14, 1612.	1.7	19

#	Article	IF	CITATIONS
73	Acoustic cavitation rheometry. Soft Matter, 2021, 17, 2931-2941.	1.2	17
74	Integrated Histotripsy and Bubble Coalescence Transducer for Thrombolysis. Ultrasound in Medicine and Biology, 2018, 44, 2697-2709.	0.7	16
75	Safety Evaluation of a Forward-Viewing Intravascular Transducer for Sonothrombolysis: An in Vitro and ex Vivo Study. Ultrasound in Medicine and Biology, 2021, 47, 3231-3239.	0.7	15
76	Catheter Hydrophone Aberration Correction for Transcranial Histotripsy Treatment of Intracerebral Hemorrhage: Proof-of-Concept. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64, 1684-1697.	1.7	15
77	The role of compressional pressure in the formation of dense bubble clouds in histotripsy. , 2009, , .		14
78	Histotripsy Ablations in a Porcine Liver Model: Feasibility of Respiratory Motion Compensation by Alteration of the Ablation Zone Prescription Shape. CardioVascular and Interventional Radiology, 2020, 43, 1695-1701.	0.9	13
79	Transcranial Magnetic Resonance-Guided Histotripsy for Brain Surgery: Pre-clinical Investigation. Ultrasound in Medicine and Biology, 2022, 48, 98-110.	0.7	13
80	Bubble-Induced Color Doppler Feedback Correlates with Histotripsy-Induced Destruction of Structural Components in Liver Tissue. Ultrasound in Medicine and Biology, 2018, 44, 602-612.	0.7	12
81	Integrated Histotripsy and Bubble Coalescence Transducer for Rapid Tissue Ablation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 1822-1831.	1.7	12
82	Hemodynamic and Hematologic Effects of Histotripsy of Free-Flowing Blood: Implications for Ultrasound-Mediated Thrombolysis. Journal of Vascular and Interventional Radiology, 2015, 26, 1559-1565.	0.2	11
83	Why Are Short Pulses More Efficient in Tissue Erosion Using Pulsed Cavitational Ultrasound Therapy (Histotripsy)?. , 2010, , .		10
84	Two-step aberration correction: application to transcranial histotripsy. Physics in Medicine and Biology, 2022, 67, 125009.	1.6	9
85	In-vivo study of non-invasive thrombolysis by histotripsy in a porcine model. , 2009, , .		8
86	Histotripsy Lesion Formation Using an Ultrasound Imaging Probe Enabled by a Low-Frequency Pump Transducer. Ultrasound in Medicine and Biology, 2015, 41, 2148-2160.	0.7	7
87	Transcostal Histotripsy Ablation in an In Vivo Acute Hepatic Porcine Model. CardioVascular and Interventional Radiology, 2021, 44, 1643-1650.	0.9	7
88	An Analysis of Sonothrombolysis and Cavitation for Retracted and Unretracted Clots Using Microbubbles Versus Low-Boiling-Point Nanodroplets. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 711-719.	1.7	7
89	Enhanced Shock Scattering Histotripsy With Pseudomonopolar Ultrasound Pulses. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66, 1185-1197.	1.7	6
90	Stereotactic Transcranial Focused Ultrasound Targeting System for Murine Brain Models. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 154-163.	1.7	6

#	Article	IF	CITATIONS
91	Non-invasive thrombolysis induced by histotripsy pulsed cavitation ultrasound therapy. , 2008, , .		5
92	The effect of histotripsy on tissues with different mechanical properties. , 2011, , .		5
93	A cost-effective, multi-flash, "ghost―imaging technique for high temporal and spatial resolution imaging of cavitation using "still-frame―cameras. Journal of the Acoustical Society of America, 2020, 147, 1339-1343.	0.5	5
94	Endocavity Histotripsy for Efficient Tissue Ablation–Transducer Design and Characterization. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 2896-2905.	1.7	5
95	Optical and Acoustic Monitoring of Bubble Dynamics at a Tissue-fluid Interface in Ultrasound Tissue Erosion. AIP Conference Proceedings, 2006, , .	0.3	4
96	Non-invasive fetal therapy using histotripsy: Feasibility study in the sheep model. , 2009, , .		4
97	Coalescence of residual histotripsy cavitation nuclei using low-gain regions of the therapy beam during electronic focal steering. Physics in Medicine and Biology, 2018, 63, 225010.	1.6	4
98	Histotripsy: Potential Noninvasive Management of Intracerebral Hemorrhage. World Neurosurgery, 2020, 139, 614-615.	0.7	4
99	In Vivo Porcine Aged Deep Vein Thrombosis Model for Testing Ultrasound-based Thrombolysis Techniques. Ultrasound in Medicine and Biology, 2021, 47, 3447-3457.	0.7	4
100	A Tissue Phantom for Evaluation of Mechanical Damage Caused by Cavitation. , 2010, , .		3
101	Real-time elastography-based monitoring of histotripsy tissue fractionation using color Doppler. , 2012, , .		3
102	Intravascular Sonothrombolysis, in vitro, Using a Small Aperture, Forward-Viewing, Sub-Megahertz Transducer to Enhance tPA Treatment. , 2019, , .		3
103	Dual-Frequency Intravascular Thrombolysis with Miniaturized Forward-Looking Transducers. , 2020, ,		3
104	Performance of a transcranial ultrasound array designed for 4D acoustoelectric brain imaging in humans. , 2017, , .		2
105	Size Measurement of Tissue Debris Generated from Mechanical Tissue Fractionation by Cavitational Pulsed Ultrasound Therapy — Histotripsy. AIP Conference Proceedings, 2007, , .	0.3	1
106	Active protection in pulse cavitational ultrasound therapy (histotripsy). , 2009, , .		1
107	Real-time motion tracking for non-invasive ultrasound cardiac therapy using histotripsy. , 2011, , .		1
108	Investigation of the mechanism of ARFI-based Color Doppler feedback of histotripsy tissue fractionation. , 2013, , .		1

#	Article	IF	CITATIONS
109	Notice of Removal: Acoustic cavitation emission feedback to monitor tissue fractionation during histotripsy therapy. , 2017, , .		1
110	Notice of Removal: Rapid liquefaction of blood clots using histotripsy in an in vivo porcine intracerebral hemorrhage (ICH) model. , 2017, , .		1
111	Acoustic Measurements of Nucleus Size Distribution at the Cavitation Threshold. Ultrasound in Medicine and Biology, 2021, 47, 1024-1031.	0.7	1
112	Cavitation-Enhanced High-Pressure Pulsed Sonothrombolysis with Perfluorocarbon Nanodroplets versus Microbubbles in Contracted and Uncontracted Clots. , 2020, , .		1
113	Controlled ultrasound tissue erosion. , 0, , .		0
114	Quantitative image feedback for pulsed cavitational ultrasound therapy- histotripsy. , 2008, , .		0
115	Histotripsy for Pediatric Cardiac Applications: In Vivo Neonatal Pig Model. , 2010, , .		0
116	Ultrasound-induced fluid uptake phenomenon in porcine uterine tissue. , 2010, , .		0
117	Lesion generation through ribs without aberration correction using cavitational therapy. , 2010, , .		0
118	Imaging feedback of histotripsy treatments using ultrasound transient elastography. , 2011, , .		0
119	Ultrasound backscatter spectral analysis provides image feedback for histotripsy tissue fractionation. , 2011, , .		0
120	The effect of acoustic parameters on the Non-Invasive Embolus Trap (NET) using a histotripsy-generated bubble cloud. , 2011, , .		0
121	Trapping of solid particles by cavitation-induced acoustic streaming. , 2011, , .		0
122	Non-invasive fetal therapy using histotripsy: Safety and local impact on fetal development. , 2011, , .		0
123	In-vivo transcostal histotripsy therapy without aberration correction. , 2013, , .		0
124	Notice of Removal: Integrated histotripsy and bubble coalescence transducer for rapid tissue ablation. , 2017, , .		0
125	Intravascular Dual-frequency Ultrasound Transducer Using a Stack Composite. , 2021, , .		0