
Rafael Lucas RodrÃ-guez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7305969/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Behavioral Ecology of Insect Vibrational Communication. BioScience, 2005, 55, 323.	4.9	443
2	Ordinary least squares regression is indicated for studies of allometry. Journal of Evolutionary Biology, 2017, 30, 4-12.	1.7	180
3	Mechanisms of Assortative Mating in Speciation with Gene Flow: Connecting Theory and Empirical Research. American Naturalist, 2018, 191, 1-20.	2.1	169
4	Contributions of natural and sexual selection to the evolution of premating reproductive isolation: a research agenda. Trends in Ecology and Evolution, 2013, 28, 643-650.	8.7	158
5	Evidence that female preferences have shaped male signal evolution in a clade of specialized plant-feeding insects. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 2585-2593.	2.6	126
6	Sexual Selection and Static Allometry: The Importance of Function. Quarterly Review of Biology, 2018, 93, 207-250.	0.1	113
7	Genotype–environment interaction and the reliability of mating signals. Animal Behaviour, 2004, 68, 1461-1468.	1.9	112
8	VIBRATIONAL COMMUNICATION AND REPRODUCTIVE ISOLATION IN THE ENCHENOPA BINOTATA SPECIES COMPLEX OF TREEHOPPERS (HEMIPTERA: MEMBRACIDAE). Evolution; International Journal of Organic Evolution, 2004, 58, 571-578.	2.3	107
9	EXPERIENCE-MEDIATED PLASTICITY IN MATE PREFERENCES: MATING ASSURANCE IN A VARIABLE ENVIRONMENT. Evolution; International Journal of Organic Evolution, 2012, 66, 459-468.	2.3	99
10	Host shifts and signal divergence: mating signals covary with host use in a complex of specialized plant-feeding insects. Biological Journal of the Linnean Society, 0, 99, 60-72.	1.6	90
11	The evolution and evolutionary consequences of social plasticity in mate preferences. Animal Behaviour, 2013, 85, 1041-1047.	1.9	83
12	Diversification under sexual selection: the relative roles of mate preference strength and the degree of divergence in mate preferences. Ecology Letters, 2013, 16, 964-974.	6.4	81
13	GENETIC VARIANCE AND PHENOTYPIC PLASTICITY IN A COMPONENT OF FEMALE MATE CHOICE IN AN ULTRASONIC MOTH. Evolution; International Journal of Organic Evolution, 2003, 57, 1304-1313.	2.3	73
14	The evolution of experienceâ€mediated plasticity in mate preferences. Journal of Evolutionary Biology, 2012, 25, 1855-1863.	1.7	58
15	Males adjust signaling effort based on female mate-preference cues. Behavioral Ecology, 2012, 23, 1218-1225.	2.2	51
16	Divergence in Female Duetting Signals in the Enchenopa binotata Species Complex of Treehoppers (Hemiptera: Membracidae). Ethology, 2006, 112, 1231-1238.	1.1	50
17	How acoustic signals scale with individual body size: common trends across diverse taxa. Behavioral Ecology, 2015, 26, 168-177.	2.2	50
18	Curves as traits: genetic and environmental variation in mate preference functions. Journal of Evolutionary Biology, 2013, 26, 434-442.	1.7	45

RAFAEL LUCAS RODRÃGUEZ

#	Article	IF	CITATIONS
19	Describing mate preference functions and other functionâ€valued traits. Journal of Evolutionary Biology, 2017, 30, 1658-1673.	1.7	45
20	Behavioural context regulates dual function of ultrasonic hearing in lesser waxmoths: bat avoidance and pair formation. Physiological Entomology, 2004, 29, 159-168.	1.5	43
21	Nephila clavipes spiders (Araneae: Nephilidae) keep track of captured prey counts: testing for a sense of numerosity in an orb-weaver. Animal Cognition, 2015, 18, 307-314.	1.8	41
22	Cognitive Phenotypes and the Evolution of Animal Decisions. Trends in Ecology and Evolution, 2016, 31, 850-859.	8.7	41
23	The static allometry of sexual and nonsexual traits in vervet monkeys. Biological Journal of the Linnean Society, 2015, 114, 527-537.	1.6	38
24	Adult age confounds estimates of static allometric slopes in a vertebrate. Ethology Ecology and Evolution, 2015, 27, 412-421.	1.4	35
25	Genetic variation in social influence on mate preferences. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130803.	2.6	34
26	Allometric Slopes Not Underestimated by Ordinary Least Squares Regression: A Case Study With Enchenopa Treehoppers (Hemiptera: Membracidae). Annals of the Entomological Society of America, 2011, 104, 562-566.	2.5	27
27	Causes of variation in sexual allometry: a case study with the mating signals and genitalia of <i>Enchenopa</i> treehoppers (Hemiptera Membracidae). Ethology Ecology and Evolution, 2012, 24, 187-197.	1.4	27
28	Why the Static Allometry of Sexually-Selected Traits Is So Variable: The Importance of Function. Integrative and Comparative Biology, 2019, 59, 1290-1302.	2.0	27
29	Host Shifts, the Evolution of Communication, and Speciation in the Enchenopa binotata Species Complex of Treehoppers. , 2008, , 88-100.		27
30	The contribution of tympanic transmission to fine temporal signal evaluation in an ultrasonic moth. Journal of Experimental Biology, 2005, 208, 4159-4165.	1.7	26
31	HOST SHIFTS AND THE BEGINNING OF SIGNAL DIVERGENCE. Evolution; International Journal of Organic Evolution, 2007, 62, 071115145922004-???.	2.3	26
32	Enigmatic ornamentation eases male reliance on courtship performance for mating success. Animal Behaviour, 2011, 81, 963-972.	1.9	26
33	Insect mating signal and mate preference phenotypes covary among host plant genotypes. Evolution; International Journal of Organic Evolution, 2015, 69, 602-610.	2.3	24
34	Repeatability of mate preference functions in Enchenopa treehoppers (Hemiptera: Membracidae). Animal Behaviour, 2013, 85, 493-499.	1.9	22
35	Local population density and group composition influence the signalâ€preference relationship in <i>Enchenopa</i> treehoppers (Hemiptera: Membracidae). Journal of Evolutionary Biology, 2017, 30, 13-25.	1.7	22
36	GenotypeÂ×Âenvironment interaction is weaker in genitalia than in mating signals and body traits in Enchenopa treehoppers (Hemiptera: Membracidae). Genetica, 2011, 139, 871-884.	1.1	21

#	Article	IF	CITATIONS
37	Males adjust their signalling behaviour according to experience of male signals and male–female signal duets. Journal of Evolutionary Biology, 2016, 29, 766-776.	1.7	21
38	The causes of variation in the presence of genetic covariance between sexual traits and preferences. Biological Reviews, 2016, 91, 498-510.	10.4	20
39	On the architecture of mate choice decisions: preference functions and choosiness are distinct traits. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182830.	2.6	20
40	Vibrational communication and reproductive isolation in the Enchenopa binotata species complex of treehoppers (Hemiptera: Membracidae). Evolution; International Journal of Organic Evolution, 2004, 58, 571-8.	2.3	20
41	Beyond temperature coupling: Effects of temperature on ectotherm signaling and mate choice and the implications forÂcommunication in multispecies assemblages. Ecology and Evolution, 2017, 7, 5992-6002.	1.9	19
42	Trait duplication by means of sensory bias. Behavioral Ecology, 2009, 20, 1376-1381.	2.2	16
43	Genetic Variation in Host Plants Influences the Mate Preferences of a Plant-Feeding Insect. American Naturalist, 2014, 184, 489-499.	2.1	16
44	Estimating the repeatability of memories of captured prey formed by Frontinella communis spiders (Araneae: Linyphiidae). Animal Cognition, 2011, 14, 675-682.	1.8	15
45	Trees to treehoppers: genetic variation in host plants contributes to variation in the mating signals of a plantâ€feeding insect. Ecology Letters, 2014, 17, 203-210.	6.4	15
46	Mating Is a Give-and-Take of Influence and Communication Between the Sexes. , 2015, , 479-496.		15
47	Evolutionary novelty in communication between the sexes. Biology Letters, 2021, 17, 20200733.	2.3	15
48	Genotype × environment interaction in the allometry of body, genitalia and signal traits in Enchenopa treehoppers (Hemiptera: Membracidae). Biological Journal of the Linnean Society, 2012, 105, 187-196.	1.6	12
49	Mutual Behavioral Adjustment in Vibrational Duetting. Animal Signals and Communication, 2014, , 147-169.	0.8	12
50	Vibrational playback by means of airborne stimuli. Journal of Experimental Biology, 2012, 215, 3513-8.	1.7	11
51	Memory of prey larders in golden orb-web spiders, Nephila clavipes (Araneae: Nephilidae). Behaviour, 2013, 150, 1345-1356.	0.8	11
52	Theory Meets Empiry: A Citation Network Analysis. BioScience, 2018, 68, 805-812.	4.9	11
53	Green symphonies or wind in the willows? Testing acoustic communication in plants. Behavioral Ecology, 2013, 24, 797-798.	2.2	10
54	Between-group variation in <i>Enchenopa</i> treehopper juvenile signaling (Hemiptera Membracidae). Ethology Ecology and Evolution, 2018, 30, 245-255.	1.4	9

#	Article	IF	CITATIONS
55	Grain of environment explains variation in the strength of genotypeÂ×Âenvironment interaction. Journal of Evolutionary Biology, 2012, 25, 1897-1901.	1.7	8
56	Social ontogeny in the communication system of an insect. Animal Behaviour, 2019, 148, 93-103.	1.9	8
57	Back to the Basics of Mate Choice: The Evolutionary Importance of Darwin's Sense of Beauty. Quarterly Review of Biology, 2020, 95, 289-309.	0.1	8
58	Variation in signal–preference genetic correlations in Enchenopa treehoppers (Hemiptera:) Tj ETQq0 0 0 rgB1	Överlock 1.9	10 Tf 50 622 7
59	Vibrational Signals and Mating Behavior of Japanese Beetles (Coleoptera: Scarabaeidae). Annals of the Entomological Society of America, 2015, 108, 986-992.	2.5	7
60	Juvenile social experience and practice have a switchâ€like influence on adult mate preferences in an insect. Evolution; International Journal of Organic Evolution, 2021, 75, 1106-1116.	2.3	7
61	Male Enchenopa treehoppers (Hemiptera: Membracidae) vary mate-searching behavior but not signaling behavior in response to spider silk. Die Naturwissenschaften, 2014, 101, 211-220.	1.6	6
62	Signalling interactions during ontogeny are a cause of social plasticity in Enchenopa treehoppers (Hemiptera: Membracidae). Behavioural Processes, 2019, 166, 103887.	1.1	6
63	Miniature spiders (with miniature brains) forget sooner. Animal Behaviour, 2019, 153, 25-32.	1.9	6
64	Mastering a 1.2†K hysteresis for martensitic para-ferromagnetic partial transformation in Ni-Mn(Cu)-Ga magnetocaloric material via binder jet 3D printing. Additive Manufacturing, 2021, 37, 101560.	3.0	6
65	Black widow spiders use path integration on their webs. Behavioral Ecology and Sociobiology, 2021, 75, 1.	1.4	6
66	Combinatorial Signal Processing in an Insect. American Naturalist, 2020, 196, 406-413.	2.1	5
67	Copulatory Courtship with Vibrational Signals. Animal Signals and Communication, 2019, , 79-89.	0.8	5
68	Do structures with sexual contact functions evolve negative static allometries? A case study with the harvestman Leiobunum vittatum (Opiliones Sclerosomatidae). Ethology Ecology and Evolution, 2017, 29, 64-73.	1.4	4
69	Female mate choice of male signals is unlikely to promote ecological adaptation in Enchenopa treehoppers (Hemiptera: Membracidae). Ecology and Evolution, 2018, 8, 2146-2159.	1.9	3
70	Ontogenetic approach reveals how cognitive capability and motivation shape preyâ€searching behavior in <i>Pholcus phalangioides</i> cellar spiders. Ethology, 2018, 124, 657-666.	1.1	3
71	VIBRATIONAL COMMUNICATION AND REPRODUCTIVE ISOLATION IN THE ENCHENOPA BINOTATA SPECIES COMPLEX OF TREEHOPPERS (HEMIPTERA: MEMBRACIDAE). Evolution; International Journal of Organic Evolution, 2004, 58, 571.	2.3	2

72 Vibrational Signals: Sounds Transmitted Through Solids. , 2019, , 508-517.

RAFAEL LUCAS RODRÃGUEZ

#	Article	lF	CITATIONS
73	The relationship between a combinatorial processing rule and a continuous mate preference function in an insect. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201278.	2.6	2
74	The web architecture of Latrodectus hesperus black widow spiders (Araneae: Theridiidae) shows genetic variation and sexual dimorphism, but no plasticity according to the experience of the site of prey capture. Behavioral Ecology and Sociobiology, 2020, 74, 1.	1.4	2
75	Repeatability but no shortâ€ŧerm plasticity in the web architecture of Latrodectus hesperus western black widow spiders (Araneae: Theridiidae). Ethology, 2020, 126, 313-319.	1.1	2
76	Adaptation without Specialization Early in a Host Shift. American Naturalist, 2021, 198, 333-346.	2.1	1
77	Causes of Variation in the Static Allometry of Morphological Structures: A Case Study with Vervet Monkeys. , 2019, , 224-232.		0
78	Indirect Genetic Effects. , 2019, , 49-55.		0
79	Positive-to-negative behavioural responses suggest hedonic evaluation in treefrog mate choice. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20211822.	2.6	0
80	Static allometry of a threat device that is not a weapon: wing spots in male <i>Heterandrium fallax</i> (Hymenoptera Agaonidae). Ethology Ecology and Evolution, 0, , 1-12.	1.4	0