Chinedum O Osuji

List of Publications by Citations

Source: https://exaly.com/author-pdf/7305605/chinedum-o-osuji-publications-by-citations.pdf

Version: 2024-04-24

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

81 7,078 139 44 h-index g-index citations papers 8,182 6.41 143 9.1 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
139	Materials for next-generation desalination and water purification membranes. <i>Nature Reviews Materials</i> , 2016 , 1,	73.3	1380
138	Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 11676-81	11.5	353
137	Directed self-assembly of block copolymers: a tutorial review of strategies for enabling nanotechnology with soft matter. <i>Soft Matter</i> , 2014 , 10, 3867-89	3.6	280
136	Antifouling ultrafiltration membranes via post-fabrication grafting of biocidal nanomaterials. <i>ACS Applied Materials & Discourt & Discourt Materials & Discourt & D</i>	9.5	226
135	Omniphobic Membrane for Robust Membrane Distillation. <i>Environmental Science and Technology Letters</i> , 2014 , 1, 443-447	11	224
134	Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E9793-E980	1 ^{11.5}	215
133	Anisotropic ionic conductivity in block copolymer membranes by magnetic field alignment. <i>Journal of the American Chemical Society</i> , 2010 , 132, 17516-22	16.4	165
132	Scalable fabrication of polymer membranes with vertically aligned 1 nm pores by magnetic field directed self-assembly. <i>ACS Nano</i> , 2014 , 8, 11977-86	16.7	155
131	Alignment of Self-Assembled Hierarchical Microstructure in Liquid Crystalline Diblock Copolymers Using High Magnetic Fields. <i>Macromolecules</i> , 2004 , 37, 9903-9908	5.5	117
130	Hybrid pressure retarded osmosis-membrane distillation system for power generation from low-grade heat: thermodynamic analysis and energy efficiency. <i>Environmental Science & Environmental Science & Technology</i> , 2014 , 48, 5306-13	10.3	114
129	High Performance Nanofiltration Membrane for Effective Removal of Perfluoroalkyl Substances at High Water Recovery. <i>Environmental Science & Environmental Science & Environme</i>	10.3	112
128	Stimuli-responsive smart gels realized via modular protein design. <i>Journal of the American Chemical Society</i> , 2010 , 132, 14024-6	16.4	99
127	Engineering flat sheet microporous PVDF films for membrane distillation. <i>Journal of Membrane Science</i> , 2015 , 492, 355-363	9.6	98
126	NANOPARTICLES. Production of amorphous nanoparticles by supersonic spray-drying with a microfluidic nebulator. <i>Science</i> , 2015 , 349, 956-60	33.3	98
125	Magnetic field alignment of block copolymers and polymer nanocomposites: Scalable microstructure control in functional soft materials. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2012 , 50, 2-8	2.6	97
124	Role of interparticle attraction in the yielding response of microgel suspensions. <i>Soft Matter</i> , 2013 , 9, 5492	3.6	88
123	Nanocomposites of vertically aligned single-walled carbon nanotubes by magnetic alignment and polymerization of a lyotropic precursor. <i>ACS Nano</i> , 2010 , 4, 6651-8	16.7	80

(2018-2016)

122	Thin Polymer Films with Continuous Vertically Aligned 1 nm Pores Fabricated by Soft Confinement. <i>ACS Nano</i> , 2016 , 10, 150-8	16.7	77
121	Shear thickening and scaling of the elastic modulus in a fractal colloidal system with attractive interactions. <i>Physical Review E</i> , 2008 , 77, 060402	2.4	75
120	Facile Alignment of Amorphous Poly(ethylene oxide) Microdomains in a Liquid Crystalline Block Copolymer Using Magnetic Fields: Toward Ordered Electrolyte Membranes. <i>Macromolecules</i> , 2010 , 43, 3286-3293	5.5	74
119	Post-fabrication modification of electrospun nanofiber mats with polymer coating for membrane distillation applications. <i>Journal of Membrane Science</i> , 2017 , 530, 158-165	9.6	70
118	Rheology of cellulose nanofibrils in the presence of surfactants. <i>Soft Matter</i> , 2016 , 12, 157-64	3.6	68
117	Side-chain liquid crystalline polymer networks: exploiting nanoscale smectic polymorphism to design shape-memory polymers. <i>ACS Nano</i> , 2011 , 5, 3085-95	16.7	68
116	New insights on fumed colloidal rheology hear thickening and vorticity-aligned structures in flocculating dispersions. <i>Rheologica Acta</i> , 2009 , 48, 871-881	2.3	67
115	Highly Selective Vertically Aligned Nanopores in Sustainably Derived Polymer Membranes by Molecular Templating. <i>ACS Nano</i> , 2017 , 11, 3911-3921	16.7	64
114	Structural Diversity of Arthropod Biophotonic Nanostructures Spans Amphiphilic Phase-Space. <i>Nano Letters</i> , 2015 , 15, 3735-42	11.5	62
113	Single-step microfluidic fabrication of soft monodisperse polyelectrolyte microcapsules by interfacial complexation. <i>Lab on A Chip</i> , 2014 , 14, 3494-7	7.2	60
112	Order-disorder transition and alignment dynamics of a block copolymer under high magnetic fields by in it x-ray scattering. <i>Physical Review Letters</i> , 2013 , 110, 078301	7.4	60
111	Janus Graft Block Copolymers: Design of a Polymer Architecture for Independently Tuned Nanostructures and Polymer Properties. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 8493-849	7 ^{16.4}	57
110	Guided Evolution of Bulk Metallic Glass Nanostructures: A Platform for Designing 3D Electrocatalytic Surfaces. <i>Advanced Materials</i> , 2016 , 28, 1940-9	24	56
109	Thermally switchable aligned nanopores by magnetic-field directed self-assembly of block copolymers. <i>Advanced Materials</i> , 2014 , 26, 5148-54	24	55
108	Magnetic Field Alignment of a Diblock Copolymer Using a Supramolecular Route <i>ACS Macro Letters</i> , 2012 , 1, 184-189	6.6	55
107	Highly anisotropic vorticity aligned structures in a shear thickening attractive colloidal system. <i>Soft Matter</i> , 2008 , 4, 1388-1392	3.6	54
106	Transverse Cylindrical Microdomain Orientation in an LC Diblock Copolymer under Oscillatory Shear. <i>Macromolecules</i> , 1999 , 32, 7703-7706	5.5	54
105	Directed Assembly of Hybrid Nanomaterials and Nanocomposites. <i>Advanced Materials</i> , 2018 , 30, e1705	7 9 4	52

Rational Design of a Block Copolymer with a High Interaction Parameter. *Macromolecules*, **2014**, 47, 6687-669652

103	Nanoscale size effects in crystallization of metallic glass nanorods. <i>Nature Communications</i> , 2015 , 6, 81	5 7 7 /	50
103	Hanoscate size effects in drystatization of metatic glass handrods. Nature communications, 2013, 6, 61	J [/ ·4	<i></i>
102	Monoliths of semiconducting block copolymers by magnetic alignment. ACS Nano, 2013, 7, 5514-21	16.7	50
101	Molecular Design of Liquid Crystalline Brush-Like Block Copolymers for Magnetic Field Directed Self-Assembly: A Platform for Functional Materials <i>ACS Macro Letters</i> , 2014 , 3, 462-466	6.6	49
100	Poly(ethylenimine)-Based Polymer Blends as Single-Ion Lithium Conductors. <i>Macromolecules</i> , 2014 , 47, 3401-3408	5.5	49
99	Tailoring Crystallization Behavior of PEO-Based Liquid Crystalline Block Copolymers through Variation in Liquid Crystalline Content. <i>Macromolecules</i> , 2011 , 44, 3924-3934	5.5	47
98	Time-resolved viscoelastic properties during structural arrest and aging of a colloidal glass. <i>Physical Review E</i> , 2010 , 82, 031404	2.4	45
97	Self-Assembly of an Ultrahigh-IBlock Copolymer with Versatile Etch Selectivity. <i>Macromolecules</i> , 2018 , 51, 6460-6467	5.5	44
96	Precise nanofiltration in a fouling-resistant self-assembled membrane with water-continuous transport pathways. <i>Science Advances</i> , 2019 , 5, eaav9308	14.3	44
95	Continuous equilibrated growth of ordered block copolymer thin films by electrospray deposition. <i>ACS Nano</i> , 2013 , 7, 2960-70	16.7	43
94	Magnetic Alignment of Block Copolymer Microdomains by Intrinsic Chain Anisotropy. <i>Physical Review Letters</i> , 2015 , 115, 258302	7.4	43
93	Understanding anisotropic transport in self-assembled membranes and maximizing ionic conductivity by microstructure alignment. <i>Soft Matter</i> , 2013 , 9, 7106	3.6	42
92	Dynamics of internal stresses and scaling of strain recovery in an aging colloidal gel. <i>Physical Review E</i> , 2009 , 80, 010404	2.4	39
91	Shaping and Locomotion of Soft Robots Using Filament Actuators Made from Liquid Crystal Elastomer Tarbon Nanotube Composites. <i>Advanced Intelligent Systems</i> , 2020 , 2, 1900163	6	38
90	Elements Provide a Clue: Nanoscale Characterization of Thin-Film Composite Polyamide Membranes. <i>ACS Applied Materials & Acs Applied & Acs A</i>	9.5	37
89	Selectivity and Mass Transfer Limitations in Pressure-Retarded Osmosis at High Concentrations and Increased Operating Pressures. <i>Environmental Science & Environmental Scienc</i>	10.3	37
88	Mesenchymal stromal cells form vascular tubes when placed in fibrin sealant and accelerate wound healing in vivo. <i>Biomaterials</i> , 2015 , 40, 61-71	15.6	35
87	Directed self-assembly of hybrid oxide/polymer core/shell nanowires with transport optimized morphology for photovoltaics. <i>Advanced Materials</i> , 2012 , 24, 82-7	24	35

(2018-2010)

86	Physical aging and relaxation of residual stresses in a colloidal glass following flow cessation. Journal of Rheology, 2010 , 54, 943-958	4.1	35
85	Phase Behavior of Polylactide-Based Liquid Crystalline Brushlike Block Copolymers. <i>Macromolecules</i> , 2015 , 48, 8315-8322	5.5	34
84	Liquid crystalline order and magnetocrystalline anisotropy in magnetically doped semiconducting ZnO nanowires. <i>ACS Nano</i> , 2011 , 5, 8357-64	16.7	34
83	Supramolecular Microphase Separation in a Hydrogen-Bonded Liquid Crystalline Comb Copolymer in the Melt State. <i>Macromolecules</i> , 2006 , 39, 3114-3117	5.5	33
82	Controlling orientational order in block copolymers using low-intensity magnetic fields. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E9437-E9444	11.5	31
81	Relating Selectivity and Separation Performance of Lamellar Two-Dimensional Molybdenum Disulfide (MoS) Membranes to Nanosheet Stacking Behavior. <i>Environmental Science & Environmental Science & Envi</i>	10.3	31
80	Role of HF in oxygen removal from carbon nanotubes: implications for high performance carbon electronics. <i>Nano Letters</i> , 2014 , 14, 6179-84	11.5	31
79	Aligned nanostructured polymers by magnetic-field-directed self-assembly of a polymerizable lyotropic mesophase. <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 19710-7	9.5	30
78	Hierarchically Self-Assembled Photonic Materials from Liquid Crystalline Random Brush Copolymers. <i>Macromolecules</i> , 2013 , 46, 4558-4566	5.5	30
77	Smectic Demixing in the Phase Behavior and Self-Assembly of a Hydrogen-Bonded Polymer with Mesogenic Side Chains. <i>Macromolecules</i> , 2010 , 43, 6646-6654	5.5	30
76	Tuning the permselectivity of polymeric desalination membranes via control of polymer crystallite size. <i>Nature Communications</i> , 2019 , 10, 2347	17.4	29
75	Loss of Phospholipid Membrane Integrity Induced by Two-Dimensional Nanomaterials. <i>Environmental Science and Technology Letters</i> , 2017 , 4, 404-409	11	29
74	Cholesteric mesophase in side-chain liquid crystalline polymers: influence of mesogen interdigitation and motional decoupling. <i>Soft Matter</i> , 2012 , 8, 3185	3.6	27
73	Viscoelasticity of a colloidal gel during dynamical arrest: Evolution through the critical gel and comparison with a soft colloidal glass. <i>Journal of Rheology</i> , 2014 , 58, 1557-1579	4.1	26
72	Smart Cellulose Nanofluids Produced by Tunable Hydrophobic Association of Polymer-Grafted Cellulose Nanocrystals. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 31095-31101	9.5	26
71	Soft microcapsules with highly plastic shells formed by interfacial polyelectrolyte-nanoparticle complexation. <i>Soft Matter</i> , 2015 , 11, 7478-82	3.6	25
70	Size-dependent viscosity in the super-cooled liquid state of a bulk metallic glass. <i>Applied Physics Letters</i> , 2013 , 102, 221901	3.4	25
69	Fabrication of a Desalination Membrane with Enhanced Microbial Resistance through Vertical Alignment of Graphene Oxide. <i>Environmental Science and Technology Letters</i> , 2018 , 5, 614-620	11	24

68	Photoresponsive and Magnetoresponsive Graphene Oxide Microcapsules Fabricated by Droplet Microfluidics. <i>ACS Applied Materials & Microfluidics</i> , 9, 44192-44198	9.5	24
67	Lyotropic self-assembly of high-aspect-ratio semiconductor nanowires of single-crystal ZnO. <i>Langmuir</i> , 2011 , 27, 11616-21	4	24
66	Shear-accelerated crystallization in a supercooled atomic liquid. <i>Physical Review E</i> , 2015 , 91, 020301	2.4	23
65	Sustainable manufacturing of sensors onto soft systems using self-coagulating conductive Pickering emulsions. <i>Science Robotics</i> , 2020 , 5,	18.6	23
64	Sub-10 nm Self-Assembly of Mesogen-Containing Grafted Macromonomers and Their Bottlebrush Polymers. <i>Macromolecules</i> , 2018 , 51, 3680-3690	5.5	23
63	Lyotropic Hexagonal Ordering in Aqueous Media by Conjugated Hairy-Rod Supramolecules. <i>Macromolecules</i> , 2010 , 43, 7549-7555	5.5	23
62	Controlled alignment of lamellar lyotropic mesophases by rotation in a magnetic field. <i>Langmuir</i> , 2010 , 26, 8737-42	4	23
61	Pathway-engineering for highly-aligned block copolymer arrays. <i>Nanoscale</i> , 2017 , 10, 416-427	7.7	22
60	Single crystal texture by directed molecular self-assembly along dual axes. <i>Nature Materials</i> , 2019 , 18, 1235-1243	27	21
59	Isomeric Effect Enabled Thermally Driven Self-Assembly of Hydroxystyrene-Based Block Copolymers. <i>ACS Macro Letters</i> , 2016 , 5, 833-838	6.6	21
58	Morphology Development in Thin Films of a Lamellar Block Copolymer Deposited by Electrospray. <i>Macromolecules</i> , 2014 , 47, 5703-5710	5.5	21
57	Highly stiff yet elastic microcapsules incorporating cellulose nanofibrils. <i>Soft Matter</i> , 2017 , 13, 2733-27	33.6	20
56	Alignment of Self-Assembled Structures in Block Copolymer Films by Solvent Vapor Permeation. <i>Macromolecules</i> , 2010 , 43, 3132-3135	5.5	19
55	Fabrication of Modularly Functionalizable Microcapsules Using Protein-Based Technologies. <i>ACS Biomaterials Science and Engineering</i> , 2016 , 2, 1856-1861	5.5	19
54	Atomic imprinting into metallic glasses. <i>Communications Physics</i> , 2018 , 1,	5.4	19
53	Optically Active Elastomers from Liquid Crystalline Comb Copolymers with Dual Physical and Chemical Cross-Links. <i>Macromolecules</i> , 2017 , 50, 5929-5939	5.5	18
52	Directing block copolymer self-assembly with permanent magnets: photopatterning microdomain alignment and generating oriented nanopores. <i>Molecular Systems Design and Engineering</i> , 2017 , 2, 549-	5 \$ \$	18
51	Non-degenerate magnetic alignment of self-assembled mesophases. <i>Soft Matter</i> , 2009 , 5, 3417	3.6	18

(2014-2019)

50	The Effects of Magnetic Field Alignment on Lithium Ion Transport in a Polymer Electrolyte Membrane with Lamellar Morphology. <i>Polymers</i> , 2019 , 11,	4.5	17
49	Large area vertical alignment of ZnO nanowires in semiconducting polymer thin films directed by magnetic fields. <i>Nanoscale</i> , 2013 , 5, 10511-7	7.7	17
48	Dual-Functionality Fullerene and Silver Nanoparticle Antimicrobial Composites via Block Copolymer Templates. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 1, 100 (1997) 1	9.5	17
47	Optical materials and metamaterials from nanostructured soft matter. <i>Nano Research</i> , 2019 , 12, 2172-2	21 <u>8</u> 3	15
46	Multi-Scale Assembly of Polythiophene-Surfactant Supramolecular Complexes for Charge Transport Anisotropy. <i>Macromolecules</i> , 2017 , 50, 1047-1055	5.5	14
45	Implications of Grain Size Variation in Magnetic Field Alignment of Block Copolymer Blends. <i>ACS Macro Letters</i> , 2017 , 6, 404-409	6.6	14
44	Multiscale patterning of a metallic glass using sacrificial imprint lithography. <i>Microsystems and Nanoengineering</i> , 2015 , 1,	7.7	14
43	Stable sequestration of single-walled carbon nanotubes in self-assembled aqueous nanopores. <i>Journal of the American Chemical Society</i> , 2012 , 134, 3950-3	16.4	14
42	Finite size effects in the crystallization of a bulk metallic glass. <i>Applied Physics Letters</i> , 2013 , 103, 1119	123.4	14
41	Nanoimprinting sub-100 nm features in a photovoltaic nanocomposite using durable bulk metallic glass molds. <i>ACS Applied Materials & Distriction</i> (1988) <i>ACS Applied Materials & Distriction</i> (1988) <i>ACS Applied Materials & Distriction</i> (1988) <i>Distriction</i> (198	9.5	13
40	Rapid Fabrication by Lyotropic Self-Assembly of Thin Nanofiltration Membranes with Uniform 1 Nanometer Pores. <i>ACS Nano</i> , 2021 , 15, 8192-8203	16.7	13
39	Strong Orientational Coupling of Block Copolymer Microdomains to Smectic Layering Revealed by Magnetic Field Alignment. <i>ACS Macro Letters</i> , 2016 , 5, 292-296	6.6	12
38	Effect of Final Monomer Deposition Steps on Molecular Layer-by-Layer Polyamide Surface Properties. <i>Langmuir</i> , 2016 , 32, 10815-10823	4	12
37	Sequential deposition of block copolymer thin films and formation of lamellar heterolattices by electrospray deposition. <i>Journal of Polymer Science, Part B: Polymer Physics,</i> 2016 , 54, 247-253	2.6	11
36	Experimental Evidence for Proposed Transformation Pathway from the Inverse Hexagonal to Inverse Diamond Cubic Phase from Oriented Lipid Samples. <i>Langmuir</i> , 2015 , 31, 7707-11	4	10
35	Aligned Morphologies in Near-Edge Regions of Block Copolymer Thin Films. <i>Macromolecules</i> , 2019 , 52, 7224-7233	5.5	9
34	Physical Continuity and Vertical Alignment of Block Copolymer Domains by Kinetically Controlled Electrospray Deposition. <i>Macromolecular Rapid Communications</i> , 2015 , 36, 1290-6	4.8	9
33	Scalable high-fidelity growth of semiconductor nanorod arrays with controlled geometry for photovoltaic devices using block copolymers. <i>Small</i> , 2014 , 10, 4304-9	11	9

32	Creating Aligned Nanopores by Magnetic Field Processing of Block Copolymer/Homopolymer Blends. <i>ACS Macro Letters</i> , 2019 , 8, 261-266	6.6	9
31	Janus Graft Block Copolymers: Design of a Polymer Architecture for Independently Tuned Nanostructures and Polymer Properties. <i>Angewandte Chemie</i> , 2018 , 130, 8629-8633	3.6	9
30	Hexagonally Ordered Arrays of Helical Bundles Formed from Peptide-Dendron Hybrids. <i>Journal of the American Chemical Society</i> , 2017 , 139, 15977-15983	16.4	8
29	Continuous and patterned deposition of functional block copolymer thin films using electrospray. <i>MRS Communications</i> , 2015 , 5, 235-242	2.7	8
28	Flat Drops, Elastic Sheets, and Microcapsules by Interfacial Assembly of a Bacterial Biofilm Protein, BslA. <i>Langmuir</i> , 2017 , 33, 13590-13597	4	8
27	Evaluating the Dispersant Stabilization of Colloidal Suspensions from the Scaling Behavior of Gel Rheology and Adsorption Measurements. <i>Langmuir</i> , 2018 , 34, 1092-1099	4	8
26	Facile Protein Immobilization Using Engineered Surface-Active Biofilm Proteins. <i>ACS Applied Nano Materials</i> , 2018 , 1, 2483-2488	5.6	8
25	Electrospray deposition tool: Creating compositionally gradient libraries of nanomaterials. <i>Review of Scientific Instruments</i> , 2020 , 91, 013701	1.7	7
24	Polymer Nanosheets from Supramolecular Assemblies of Conjugated Linoleic Acid-High Surface Area Adsorbents from Renewable Materials. <i>Langmuir</i> , 2017 , 33, 10690-10697	4	6
23	Synthesis and suspension rheology of titania nanoparticles grafted with zwitterionic polymer brushes. <i>Journal of Colloid and Interface Science</i> , 2012 , 386, 135-40	9.3	5
22	Lyotropic liquid crystals as templates for advanced materials. Journal of Materials Chemistry A,	13	5
21	Synthesis of High Etch Contrast Poly(3-hydroxystyrene)-Based Triblock Copolymers and Self-Assembly of Sub-5 nm Features. <i>Macromolecules</i> , 2021 , 54, 9542-9550	5.5	4
20	High-throughput morphology mapping of self-assembling ternary polymer blends <i>RSC Advances</i> , 2020 , 10, 42529-42541	3.7	4
19	Soft robotic constrictor for in vitro modeling of dynamic tissue compression. <i>Scientific Reports</i> , 2021 , 11, 16478	4.9	4
18	Simple production of cellulose nanofibril microcapsules and the rheology of their suspensions. <i>Soft Matter</i> , 2021 , 17, 4517-4524	3.6	4
17	Nanoscale Thickness Control of Nanoporous Films Derived from Directionally Photopolymerized Mesophases. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2001977	4.6	4
16	Rapid fabrication of ZnO nanorod arrays with controlled spacing by micelle-templated solvothermal growth. <i>Nanoscale</i> , 2016 , 8, 149-56	7.7	3
15	Nanocomposites of 2D-MoS2 Exfoliated in Thermotropic Liquid Crystals 2021 , 3, 704-712		3

LIST OF PUBLICATIONS

14	Film Thickness and Composition Effects in Symmetric Ternary Block Copolymer/Homopolymer Blend Films: Domain Spacing and Orientation. <i>Macromolecules</i> , 2021 , 54, 7970-7986	5.5	3
13	Self-assembly of supramolecular complexes of charged conjugated polymers and imidazolium-based ionic liquid crystals. <i>Giant</i> , 2022 , 9, 100088	5.6	2
12	Effects of Labile Mesogens on the Morphology of Liquid Crystalline Block Copolymers in Thin Films. <i>Macromolecules</i> , 2021 , 54, 3223-3231	5.5	2
11	Stable cross-linked lyotropic gyroid mesophases from single-head/single-tail cross-linkable monomers. <i>Chemical Communications</i> , 2021 , 57, 10931-10934	5.8	2
10	Three-Dimensional Compatible Sacrificial Nanoimprint Lithography for Tuning the Wettability of Thermoplastic Materials. <i>Journal of Micro and Nano-Manufacturing</i> , 2018 , 6,	1.3	2
9	Dynamics of Transient Vorticity-Aligned Structures and Internal Stresses in Shear Thickening Colloidal Gels. <i>AIP Conference Proceedings</i> , 2008 ,	О	1
8	Yielding and bifurcated aging in nanofibrillar networks. Physical Review Materials, 2020, 4,	3.2	1
7	100th Anniversary of Macromolecular Science Viewpoint: Opportunities for Liquid Crystal Polymers in Nanopatterning and Beyond <i>ACS Macro Letters</i> , 2021 , 10, 945-957	6.6	1
6	Dynamic magnetic field alignment and polarized emission of semiconductor nanoplatelets in a liquid crystal polymer <i>Nature Communications</i> , 2022 , 13, 2507	17.4	1
5	Plasmonic Sensing from Vertical Au-Coated ZnO Nanorod Arrays Templated by Block Copolymers. <i>ACS Applied Nano Materials</i> , 2021 , 4, 8556-8563	5.6	O
4	Tunable organic solvent nanofiltration in self-assembled membranes at the sub-1 nm scale <i>Science Advances</i> , 2022 , 8, eabm5899	14.3	O
3	Shaping and Locomotion of Soft Robots Using Filament Actuators Made from Liquid Crystal Elastomer©arbon Nanotube Composites. <i>Advanced Intelligent Systems</i> , 2020 , 2, 2070063	6	
2	Correlation of droplet elasticity and volume fraction effects on emulsion dynamics. <i>Soft Matter</i> , 2020 , 16, 2574-2580	3.6	
1	Electrocatalysts: Guided Evolution of Bulk Metallic Glass Nanostructures: A Platform for Designing 3D Electrocatalytic Surfaces (Adv. Mater. 10/2016). <i>Advanced Materials</i> , 2016 , 28, 1902-1902	24	