Chao Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7305146/publications.pdf Version: 2024-02-01

Снао Мл

#	Article	IF	CITATIONS
1	A <scp>SMAD4</scp> â€modulated gene profile predicts diseaseâ€free survival in stage <scp>II</scp> and <scp>III</scp> colorectal cancer. Cancer Reports, 2022, 5, e1423.	1.4	10
2	KRAS Mutants Upregulate Integrin β4 to Promote Invasion and Metastasis in Colorectal Cancer. Molecular Cancer Research, 2022, 20, 1305-1319.	3.4	3
3	Colorectal Cancer Develops Inherent Radiosensitivity That Can Be Predicted Using Patient-Derived Organoids. Cancer Research, 2022, 82, 2298-2312.	0.9	14
4	A Claudin-Based Molecular Signature Identifies High-Risk, Chemoresistant Colorectal Cancer Patients. Cells, 2021, 10, 2211.	4.1	10
5	Rapid interrogation of cancer cell of origin through CRISPR editing. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	12
6	Molecular and phenotypic profiling of colorectal cancer patients in West Africa reveals biological insights. Nature Communications, 2021, 12, 6821.	12.8	15
7	Tumor Microenvironment-Derived NRG1 Promotes Antiandrogen Resistance in Prostate Cancer. Cancer Cell, 2020, 38, 279-296.e9.	16.8	135
8	Stomatin-like Protein 2 Promotes Tumor Cell Survival by Activating the JAK2-STAT3-PIM1 Pathway, Suggesting a Novel Therapy in CRC. Molecular Therapy - Oncolytics, 2020, 17, 169-179.	4.4	8
9	Mismatch Repair–Deficient Rectal Cancer and Resistance to Neoadjuvant Chemotherapy. Clinical Cancer Research, 2020, 26, 3271-3279.	7.0	118
10	Loss of CHD1 Promotes Heterogeneous Mechanisms of Resistance to AR-Targeted Therapy via Chromatin Dysregulation. Cancer Cell, 2020, 37, 584-598.e11.	16.8	96
11	Genomic stratification beyond Ras/Bâ€Raf in colorectal liver metastasis patients treated with hepatic arterial infusion. Cancer Medicine, 2019, 8, 6538-6548.	2.8	8
12	A rectal cancer organoid platform to study individual responses to chemoradiation. Nature Medicine, 2019, 25, 1607-1614.	30.7	320
13	SMAD4 Loss in Colorectal Cancer Patients Correlates with Recurrence, Loss of Immune Infiltrate, and Chemoresistance. Clinical Cancer Research, 2019, 25, 1948-1956.	7.0	71
14	Abstract 111: Tumor microenvironment derived NRG1 promotes antiandrogen resistance in prostate cancer. , 2019, , .		0
15	Epithelial Smad4 Deletion Up-Regulates Inflammation and Promotes Inflammation-Associated Cancer. Cellular and Molecular Gastroenterology and Hepatology, 2018, 6, 257-276.	4.5	50
16	SMAD4 loss in colorectal cancer: Correlation with recurrence, chemoresistance, and immune infiltrate Journal of Clinical Oncology, 2017, 35, 587-587.	1.6	5
17	Opposing influence of intracellular and membrane thiols on the toxicity of reducible polycations. Biomaterials, 2013, 34, 8843-8850.	11.4	22
18	Synthesis of Bisethylnorspermine Lipid Prodrug as Gene Delivery Vector Targeting Polyamine Metabolism in Breast Cancer. Molecular Pharmaceutics, 2012, 9, 1654-1664.	4.6	18

Снао Wu

#	Article	IF	CITATIONS
19	Bisethylnorspermine Lipopolyamine as Potential Delivery Vector for Combination Drug/Gene Anticancer Therapies. Pharmaceutical Research, 2010, 27, 1927-1938.	3.5	6
20	Effect of innate glutathione levels on activity of redox-responsive gene delivery vectors. Journal of Controlled Release, 2010, 141, 77-84.	9.9	93
21	Effects of monoamine oxidase inhibitor and cytochrome P450 2D6 status on 5-methoxy-N,N-dimethyltryptamine metabolism and pharmacokinetics. Biochemical Pharmacology, 2010, 80, 122-128.	4.4	31
22	Methylation of 5-Amino-3-methylthio-1 H-pyrazole Derivatives and Two Related Crystal Structures. Chinese Journal of Chemistry, 2010, 22, 194-198.	4.9	7
23	Effects of CYP2D6 status on harmaline metabolism, pharmacokinetics and pharmacodynamics, and a pharmacogenetics-based pharmacokinetic model. Biochemical Pharmacology, 2009, 78, 617-624.	4.4	44
24	Evaluation of Pharmacokinetics of Bioreducible Gene Delivery Vectors by Real-time PCR. Pharmaceutical Research, 2009, 26, 1581-1589.	3.5	24
25	Cyclic RGD-targeting of reversibly stabilized DNA nanoparticles enhances cell uptake and transfection in vitro. Journal of Drug Targeting, 2009, 17, 364-373.	4.4	22
26	Bioreducible Hyperbranched Poly(amido amine)s for Gene Delivery. Biomacromolecules, 2009, 10, 2921-2927.	5.4	112
27	Design, Synthesis, and Quantitative Structureâ^'Activity Relationship Study of Herbicidal Analogues of Pyrazolo[5,1-d][1,2,3,5]tetrazin-4(3H)ones. Journal of Agricultural and Food Chemistry, 2007, 55, 1364-1369.	5.2	18
28	Synthesis of a small library containing substituted pyrazoles. Arkivoc, 2005, 2005, 59-67.	0.5	10
29	Three Trifluoromethyl-Substituted Protoporphyrinogen IX Oxidase Inhibitors ChemInform, 2005, 36, no.	0.0	0
30	Two isomeric 2-[4-chloro-2-fluoro-5-(prop-2-ynyloxy)phenyl]hexahydroisoindole-1,3-dione compounds. Acta Crystallographica Section C: Crystal Structure Communications, 2005, 61, o114-o117.	0.4	0
31	Three trifluoromethyl-substituted protoporphyrinogen IX oxidase inhibitors. Acta Crystallographica Section C: Crystal Structure Communications, 2005, 61, o122-o126.	0.4	2
32	Ethyl 5-amino-3-(4,6-dimethylpyrimidin-2-ylamino)-1-methyl-1H-pyrazole-4-carboxylate and ethyl 5-amino-3-(4,6-dimethylpyrimidin-2-ylamino)-1-(2-nitrophenylsulfonyl)-1H-pyrazole-4-carboxylate. Acta Crystallographica Section C: Crystal Structure Communications, 2005, 61, o281-o283.	0.4	0
33	5-Methyl-2-methylsulfanyl-7-phenylpyrazolo[1,5-a]pyrimidine-3-carbonitrile. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o2506-o2507.	0.2	1
34	A Facile Synthesis of Novel Herbicidal 1-Phenyl-piperazine-2,6-diones. Molecules, 2005, 10, 1119-1125.	3.8	1