Aleksandar Prokopec

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7305135/publications.pdf

Version: 2024-02-01

1684188 1281871 23 349 5 11 citations h-index g-index papers 23 23 23 120 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Renaissance: benchmarking suite for parallel applications on the JVM. , 2019, , .		55
2	Composition and Reuse with Compiled Domain-Specific Languages. Lecture Notes in Computer Science, 2013, , 52-78.	1.3	51
3	A Generic Parallel Collection Framework. Lecture Notes in Computer Science, 2011, , 136-147.	1.3	34
4	Concurrent tries with efficient non-blocking snapshots. ACM SIGPLAN Notices, 2012, 47, 151-160.	0.2	31
5	Isolates, channels, and event streams for composable distributed programming. , 2015, , .		20
6	Making collection operations optimal with aggressive JIT compilation. , 2017, , .		17
7	Containers and aggregates, mutators and isolates for reactive programming. , 2014, , .		13
8	FlowPools: A Lock-Free Deterministic Concurrent Dataflow Abstraction. Lecture Notes in Computer Science, 2013, , 158-173.	1.3	13
9	Non-blocking interpolation search trees with doubly-logarithmic running time. , 2020, , .		12
10	Efficient Lock-Free Work-Stealing Iterators for Data-Parallel Collections. , 2015, , .		11
11	SnapQueue: lock-free queue with constant time snapshots. , 2015, , .		11
12	Cache-tries. , 2018, , .		11
13	Pluggable scheduling for the reactor programming model. , 2016, , .		10
14	Conc-Trees for Functional and Parallel Programming. Lecture Notes in Computer Science, 2016, , 254-268.	1.3	10
15	An Optimization-Driven Incremental Inline Substitution Algorithm for Just-in-Time Compilers. , 2019, , .		10
16	Encoding the building blocks of communication. , 2017, , .		9
17	Lock-Free Resizeable Concurrent Tries. Lecture Notes in Computer Science, 2013, , 156-170.	1.3	7
18	Efficient Lock-Free Removing and Compaction for the Cache-Trie Data Structure. Lecture Notes in Computer Science, 2018, , 575-589.	1.3	6

#	Article	IF	CITATIONS
19	Near Optimal Work-Stealing Tree Scheduler for Highly Irregular Data-Parallel Workloads. Lecture Notes in Computer Science, 2014, , 55-86.	1.3	5
20	Renaissance: a modern benchmark suite for parallel applications on the JVM. , 2019, , .		4
21	Accelerating by Idling: How Speculative Delays Improve Performance of Message-Oriented Systems. Lecture Notes in Computer Science, 2017, , 177-191.	1.3	4
22	Pluggable Scheduling for the Reactor Programming Model. Lecture Notes in Computer Science, 2018, , 125-154.	1.3	3
23	Cache-tries. ACM SIGPLAN Notices, 2018, 53, 137-151.	0.2	2