
Paul Harris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7304740/publications.pdf Version: 2024-02-01

DALLI HADDIS

#	Article	IF	CITATIONS
1	Principal Component Analysis on Spatial Data: An Overview. Annals of the American Association of Geographers, 2013, 103, 106-128.	3.0	308
2	GWmodel : An <i>R</i> Package for Exploring Spatial Heterogeneity Using Geographically Weighted Models. Journal of Statistical Software, 2015, 63, .	1.8	280
3	Geographically weighted regression with a non-Euclidean distance metric: a case study using hedonic house price data. International Journal of Geographical Information Science, 2014, 28, 660-681.	2.2	225
4	The GWmodel R package: further topics for exploring spatial heterogeneity using geographically weighted models. Geo-Spatial Information Science, 2014, 17, 85-101.	2.4	193
5	Geographically weighted principal components analysis. International Journal of Geographical Information Science, 2011, 25, 1717-1736.	2.2	160
6	The Use of Geographically Weighted Regression forÂSpatial Prediction: AnÂEvaluation of Models Using Simulated Data Sets. Mathematical Geosciences, 2010, 42, 657-680.	1.4	142
7	Sediment source fingerprinting: benchmarking recent outputs, remaining challenges and emerging themes. Journal of Soils and Sediments, 2020, 20, 4160-4193.	1.5	124
8	Quantifying the spatio-temporal drivers of planned vegetation restoration on ecosystem services at a regional scale. Science of the Total Environment, 2019, 650, 1029-1040.	3.9	115
9	Spatially explicit simulation of land use/land cover changes: Current coverage and future prospects. Earth-Science Reviews, 2019, 190, 398-415.	4.0	108
10	Geographically weighted regression with parameter-specific distance metrics. International Journal of Geographical Information Science, 2017, 31, 982-998.	2.2	83
11	The <scp>N</scp> orth <scp>W</scp> yke <scp>F</scp> arm <scp>P</scp> latform: effect of temperate grassland farming systems on soil moisture contents, runoff and associated water quality dynamics. European Journal of Soil Science, 2016, 67, 374-385.	1.8	81
12	Robust Geographically Weighted Regression: A Technique for Quantifying Spatial Relationships Between Freshwater Acidification Critical Loads and Catchment Attributes. Annals of the American Association of Geographers, 2010, 100, 286-306.	3.0	73
13	Spatial Prediction of Coastal Bathymetry Based on Multispectral Satellite Imagery and Multibeam Data. Remote Sensing, 2015, 7, 13782-13806.	1.8	66
14	Assessment of empirical algorithms for bathymetry extraction using Sentinel-2 data. International Journal of Remote Sensing, 2019, 40, 2855-2879.	1.3	64
15	Distributions of emissions intensity for individual beef cattle reared on pasture-based production systems. Journal of Cleaner Production, 2018, 171, 1672-1680.	4.6	58
16	A comparison of Landsat 8, RapidEye and Pleiades products for improving empirical predictions of satellite-derived bathymetry. Remote Sensing of Environment, 2019, 233, 111414.	4.6	58
17	The Importance of Scale in Spatially Varying Coefficient Modeling. Annals of the American Association of Geographers, 2019, 109, 50-70.	1.5	57
18	Enhancements to a Geographically Weighted Principal Component Analysis in the Context of an Application to an Environmental Data Set. Geographical Analysis, 2015, 47, 146-172.	1.9	55

#	Article	IF	CITATIONS
19	A comparison of conventional and 137 Cs-based estimates of soil erosion rates on arable and grassland across lowland England and Wales. Earth-Science Reviews, 2017, 173, 49-64.	4.0	55
20	Quantifying the effect of ecological restoration on runoff and sediment yields. Progress in Physical Geography, 2017, 41, 753-774.	1.4	55
21	The Minkowski approach for choosing the distance metric in geographically weighted regression. International Journal of Geographical Information Science, 2016, 30, 351-368.	2.2	49
22	Gauging policy-driven large-scale vegetation restoration programmes under a changing environment: Their effectiveness and socio-economic relationships. Science of the Total Environment, 2017, 607-608, 911-919.	3.9	48
23	Improvements to the calibration of a geographically weighted regression with parameter-specific distance metrics and bandwidths. Computers, Environment and Urban Systems, 2018, 71, 41-57.	3.3	47
24	A Route Map for Successful Applications of Geographically Weighted Regression. Geographical Analysis, 2023, 55, 155-178.	1.9	45
25	Moving window kriging with geographically weighted variograms. Stochastic Environmental Research and Risk Assessment, 2010, 24, 1193-1209.	1.9	44
26	Links, comparisons and extensions of the geographically weighted regression model when used as a spatial predictor. Stochastic Environmental Research and Risk Assessment, 2011, 25, 123-138.	1.9	42
27	The Dublin SURGE Project: geochemical baseline for heavy metals in topsoils and spatial correlation with historical industry in Dublin, Ireland. Environmental Geochemistry and Health, 2014, 36, 235-254.	1.8	42
28	Multivariate Spatial Outlier Detection Using Robust Geographically Weighted Methods. Mathematical Geosciences, 2014, 46, 1-31.	1.4	42
29	Understanding satellite-derived bathymetry using Sentinel 2 imagery and spatial prediction models. GIScience and Remote Sensing, 2020, 57, 271-286.	2.4	40
30	Satellite-derived bathymetry in optically complex waters using a model inversion approach and Sentinel-2 data. Estuarine, Coastal and Shelf Science, 2020, 241, 106814.	0.9	37
31	Roles of instrumented farm-scale trials in trade-off assessments of pasture-based ruminant production systems. Animal, 2018, 12, 1766-1776.	1.3	33
32	Exploring spatial variation and spatial relationships in a freshwater acidification critical load data set for Great Britain using geographically weighted summary statistics. Computers and Geosciences, 2010, 36, 54-70.	2.0	32
33	Peri-urbanization may vary with vegetation restoration: A large scale regional analysis. Urban Forestry and Urban Greening, 2018, 29, 77-87.	2.3	31
34	Phosphate stable oxygen isotope variability within a temperate agricultural soil. Geoderma, 2017, 285, 64-75.	2.3	29
35	Field scale temporal and spatial variability of δ13C, δ15N, TC and TN soil properties: Implications for sediment source tracing. Geoderma, 2019, 333, 108-122.	2.3	29
36	Portable X-Ray Fluorescence as a Rapid Technique for Surveying Elemental Distributions in Soil. Spectroscopy Letters, 2013, 46, 516-526.	0.5	28

#	Article	IF	CITATIONS
37	A Simulation Study on Specifying a Regression Model for Spatial Data: Choosing between Autocorrelation and Heterogeneity Effects. Geographical Analysis, 2019, 51, 151-181.	1.9	27
38	Improving land cover classification using input variables derived from a geographically weighted principal components analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 119, 347-360.	4.9	26
39	Geographically weighted correspondence matrices for local error reporting and change analyses: mapping the spatial distribution of errors and change. Remote Sensing Letters, 2017, 8, 234-243.	0.6	23
40	Introducing bootstrap methods to investigate coefficient non-stationarity in spatial regression models. Spatial Statistics, 2017, 21, 241-261.	0.9	23
41	Assessment of soil water, carbon and nitrogen cycling in reseeded grassland on the North Wyke Farm Platform using a process-based model. Science of the Total Environment, 2017, 603-604, 27-37.	3.9	21
42	Modelling field scale spatial variation in water run-off, soil moisture, N2O emissions and herbage biomass of a grazed pasture using the SPACSYS model. Geoderma, 2018, 315, 49-58.	2.3	21
43	Shp2graph: Tools to Convert a Spatial Network into an Igraph Graph in R. ISPRS International Journal of Geo-Information, 2018, 7, 293.	1.4	21
44	A framework for the regional critical zone classification: the case of the Chinese Loess Plateau. National Science Review, 2019, 6, 14-18.	4.6	20
45	Geographically weighted methods and their use in network re-designs for environmental monitoring. Stochastic Environmental Research and Risk Assessment, 2014, 28, 1869-1887.	1.9	19
46	Estimating Freshwater Acidification Critical Load Exceedance Data for Great Britain Using Space-Varying Relationship Models. Mathematical Geosciences, 2011, 43, 265-292.	1.4	18
47	Elucidating three-way interactions between soil, pasture and animals that regulate nitrous oxide emissions from temperate grazing systems. Agriculture, Ecosystems and Environment, 2020, 300, 106978.	2.5	18
48	An evaluation of automated GPD threshold selection methods for hydrological extremes across different scales. Journal of Hydrology, 2020, 585, 124845.	2.3	17
49	Calibrating a Geographically Weighted Regression Model with Parameter-specific Distance Metrics. Procedia Environmental Sciences, 2015, 26, 109-114.	1.3	15
50	The Application of a Geographically Weighted Principal Component Analysis for Exploring Twenty-three Years of Goat Population Change across Mongolia. Annals of the American Association of Geographers, 2017, 107, 1060-1074.	1.5	15
51	A response to â€~A comment on geographically weighted regression with parameter-specific distance metrics'. International Journal of Geographical Information Science, 2019, 33, 1300-1312.	2.2	15
52	Key traits for ruminant livestock across diverse production systems in the context of climate change: perspectives from a global platform of research farms. Reproduction, Fertility and Development, 2021, 33, 1.	0.1	15
53	Current advisory interventions for grazing ruminant farming cannot close exceedance of modern background sediment loss – Assessment using an instrumented farm platform and modelled scaling out. Environmental Science and Policy, 2021, 116, 114-127.	2.4	15
54	Investigating spatial error structures in continuous raster data. International Journal of Applied Earth Observation and Geoinformation, 2019, 74, 259-268.	1.4	13

#	Article	IF	CITATIONS
55	When multi-functional landscape meets Critical Zone science: advancing multi-disciplinary research for sustainable human well-being. National Science Review, 2019, 6, 349-358.	4.6	13
56	Distance metric choice can both reduce and induce collinearity in geographically weighted regression. Environment and Planning B: Urban Analytics and City Science, 2020, 47, 489-507.	1.0	13
57	Nutritional value of suckler beef from temperate pasture systems. Animal, 2021, 15, 100257.	1.3	12
58	Geographically weighted evidence combination approaches for combining discordant and inconsistent volunteered geographical information. GeoInformatica, 2016, 20, 503-527.	2.0	11
59	Novel approaches to investigating spatial variability in channel bank total phosphorus at the catchment scale. Catena, 2021, 202, 105223.	2.2	10
60	Simulating grazing beef and sheep systems. Agricultural Systems, 2022, 195, 103307.	3.2	10
61	Taking the steps toward sustainable livestock: our multidisciplinary global farm platform journey. Animal Frontiers, 2021, 11, 52-58.	0.8	10
62	High-performance solutions of geographically weighted regression in R. Geo-Spatial Information Science, 2022, 25, 536-549.	2.4	10
63	Geographically weighted elastic net logistic regression. Journal of Geographical Systems, 2018, 20, 317-341.	1.9	9
64	Adjusting for Conditional Bias in Process Model Simulations of Hydrological Extremes: An Experiment Using the North Wyke Farm Platform. Frontiers in Artificial Intelligence, 2020, 3, 565859.	2.0	9
65	Using a lamb's early-life liveweight as a predictor of carcass quality. Animal, 2021, 15, 100018.	1.3	9
66	The â€~Palo a Pique' Long-Term Research Platform: First 25 Years of a Crop–Livestock Experiment in Uruguay. Agronomy, 2020, 10, 441.	1.3	8
67	Inferring management and predicting sub-field scale C dynamics in UK grasslands using biogeochemical modelling and satellite-derived leaf area data. Agricultural and Forest Meteorology, 2021, 307, 108466.	1.9	8
68	Climate Change Impacts on Crop Yield of Winter Wheat (Triticum aestivum) and Maize (Zea mays) and Soil Organic Carbon Stocks in Northern China. Agriculture (Switzerland), 2022, 12, 614.	1.4	7
69	The comap as a diagnostic tool for non-stationary kriging models. International Journal of Geographical Information Science, 2013, 27, 511-541.	2.2	6
70	CO2 fluxes from three different temperate grazed pastures using Eddy covariance measurements. Science of the Total Environment, 2022, 831, 154819.	3.9	6
71	Effect of longâ€ŧerm drainage on plant community, soil carbon and nitrogen contents and stable isotopic (<i>l´</i> ¹³ C, <i>l´</i> ¹⁵ N) composition of a permanent grassland. European Journal of Soil Science, 2018, 69, 48-68.	1.8	5
72	The Importance of Scale and the MAUP for Robust Ecosystem Service Evaluations and Landscape Decisions. Land, 2022, 11, 399.	1.2	5

#	Article	IF	CITATIONS
73	Using Bootstrap Methods to Investigate Coefficient Non-stationarity in Regression Models: An Empirical Case Study. Procedia Environmental Sciences, 2015, 27, 112-115.	1.3	4
74	A Sensitivity Analysis of the SPACSYS Model. Agriculture (Switzerland), 2021, 11, 624.	1.4	4
75	Elucidating the performance of hybrid models for predicting extreme water flow events through variography and wavelet analyses. Journal of Hydrology, 2021, 598, 126442.	2.3	4
76	Visual Comparison of Moving-Window Kriging Models. Cartographica, 2011, 46, 211-226.	0.2	2
77	The Forgotten Semantics of Regression Modeling in Geography. Geographical Analysis, 2021, 53, 113-134.	1.9	2
78	Within-field spatial variability of greenhouse gas fluxes from an extensive and intensive sheep-grazed pasture. Agriculture, Ecosystems and Environment, 2021, 312, 107355.	2.5	2
79	Quantifying the value of on-farm measurements to inform the selection of key performance indicators for livestock production systems. Scientific Reports, 2021, 11, 16874.	1.6	2
80	A case study on the effects of data temporal resolution on the simulation of water flux extremes using a process-based model at the grassland field scale. Agricultural Water Management, 2021, 255, 107049.	2.4	2
81	Contextualized Geographically Weighted Principal Components Analysis for Investigating Baseline Soils Data on the North Wyke Farm Platform. , 2016, , 651-655.		2
82	Hyper-local geographically weighted regression: extending GWR through local model selection and local bandwidth optimization. Journal of Spatial Information Science, 2018, , .	1.1	2
83	gwverse: A Template for a New Generic Geographically Weighted R Package. Geographical Analysis, 2022, 54, 685-709.	1.9	2
84	Identification and verification of ultrafine particle affinity zones in urban neighbourhoods: sample design and data pre-processing. Environmental Health, 2009, 8, S5.	1.7	1
85	Geographically Weighted Regression using a non-euclidean distance metric with simulation data. , 2012, , .		1
86	Data to calculate emissions intensity for individual beef cattle reared on pasture-based production systems. Data in Brief, 2018, 17, 570-574.	0.5	1
87	Influence of Geographical Effects in Hedonic Pricing Models for Grass-Fed Cattle in Uruguay. Agriculture (Switzerland), 2020, 10, 299.	1.4	1
88	Data to identify key drivers of animal growth and carcass quality for temperate lowland sheep production systems. Data in Brief, 2021, 35, 106977.	0.5	1
89	The Distribution of Soil Micro-Nutrients and the Effects on Herbage Micro-Nutrient Uptake and Yield in Three Different Pasture Systems. Agronomy, 2021, 11, 1731.	1.3	1
90	Local variation in hedonic house pricing in Hanoi, Vietnam: a spatial analysis of status quality trade-off (SQTO) theory. International Conference on GIScience Short Paper Proceedings, 2016, 1, .	0.0	0

#	Article	IF	CITATIONS
91	Comparisons of commercially available NIRS-based analyte predictions of haylage quality for equid nutrition. Animal Feed Science and Technology, 2022, 283, 115158.	1.1	ο