
Lauren J Gregoire

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7304412/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deglacial rapid sea level rises caused by ice-sheet saddle collapses. Nature, 2012, 487, 219-222.	13.7	185
2	The 8.2 ka cooling event caused by Laurentide ice saddle collapse. Earth and Planetary Science Letters, 2017, 473, 205-214.	1.8	118
3	Monsoon response to changes in Earth's orbital parameters: comparisons between simulations of the Eemian and of the Holocene. Climate of the Past, 2008, 4, 281-294.	1.3	114
4	The PMIP4 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3 simulations. Climate of the Past, 2021, 17, 1065-1089.	1.3	107
5	Coherent deglacial changes in western Atlantic Ocean circulation. Nature Communications, 2018, 9, 2947.	5.8	98
6	Ice sheets matter for the global carbon cycle. Nature Communications, 2019, 10, 3567.	5.8	87
7	Transient climate simulations of the deglaciation 21–9Âthousand years before present (versionÂ1) – PMIP4 Core experiment design and boundary conditions. Geoscientific Model Development, 2016, 9, 2563-2587.	1.3	84
8	Global peatland initiation driven by regionally asynchronous warming. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4851-4856.	3.3	82
9	Abrupt BÃ,lling warming and ice saddle collapse contributions to the Meltwater Pulse 1a rapid sea level rise. Geophysical Research Letters, 2016, 43, 9130-9137.	1.5	62
10	The Early Eocene equable climate problem: can perturbations of climate model parameters identify possible solutions?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20130123.	1.6	57
11	Ocean mixing and ice-sheet control of seawater ²³⁴ U/ ²³⁸ U during the last deglaciation. Science, 2016, 354, 626-629.	6.0	43
12	Collapse of the North American ice saddle 14,500 years ago caused widespread cooling and reduced ocean overturning circulation. Geophysical Research Letters, 2017, 44, 383-392.	1.5	39
13	Sensitivity of modern climate to the presence, strength and salinity of Mediterranean-Atlantic exchange in a global general circulation model. Climate Dynamics, 2014, 42, 859-877.	1.7	35
14	Optimal tuning of a GCM using modern and glacial constraints. Climate Dynamics, 2011, 37, 705-719.	1.7	34
15	Acceleration of Northern Ice Sheet Melt Induces AMOC Slowdown and Northern Cooling in Simulations of the Early Last Deglaciation. Paleoceanography and Paleoclimatology, 2018, 33, 807-824.	1.3	33
16	Laurentide ordilleran Ice Sheet saddle collapse as a contribution to meltwater pulse 1A. Geophysical Research Letters, 2015, 42, 3954-3962.	1.5	30
17	The relative contribution of orbital forcing and greenhouse gases to the North American deglaciation. Geophysical Research Letters, 2015, 42, 9970-9979.	1.5	28
18	The penultimate deglaciation: protocol for Paleoclimate Modelling Intercomparison Project (PMIP) phase 4 transient numerical simulations between 140 and 127 ka, version 1.0. Geoscientific Model Development, 2019, 12, 3649-3685.	1.3	26

LAUREN J GREGOIRE

#	Article	IF	CITATIONS
19	The parameterisation of Mediterranean–Atlantic water exchange in the Hadley Centre model HadCM3, and its effect on modelled North Atlantic climate. Ocean Modelling, 2013, 62, 11-16.	1.0	22
20	Investigating the 8.2 ka event in northwestern Madagascar: Insight from data–model comparisons. Quaternary Science Reviews, 2019, 204, 172-186.	1.4	22
21	Marine ice sheet instability and ice shelf buttressing of the Minch Ice Stream, northwest Scotland. Cryosphere, 2018, 12, 3635-3651.	1.5	21
22	Exploring the ingredients required to successfully model the placement, generation, and evolution of ice streams in the British-Irish Ice Sheet. Quaternary Science Reviews, 2019, 223, 105915.	1.4	20
23	Tropical coral reef habitat in a geoengineered, high O ₂ world. Geophysical Research Letters, 2013, 40, 1799-1805.	1.5	17
24	An efficient method to generate a perturbed parameter ensemble of a fully coupled AOGCM without flux-adjustment. Geoscientific Model Development, 2013, 6, 1447-1462.	1.3	16
25	Holocene lowering of the Laurentide ice sheet affects North Atlantic gyre circulation and climate. Climate Dynamics, 2018, 51, 3797-3813.	1.7	13
26	Drivers of Holocene palsa distribution in North America. Quaternary Science Reviews, 2020, 240, 106337.	1.4	12
27	Collapse of the Last Eurasian Ice Sheet in the North Sea Modulated by Combined Processes of Ice Flow, Surface Melt, and Marine Ice Sheet Instabilities. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2020JF005755.	1.0	12
28	Climatic Effect of Antarctic Meltwater Overwhelmed by Concurrent Northern Hemispheric Melt. Geophysical Research Letters, 2018, 45, 5681-5689.	1.5	9
29	Simulating the Early Holocene demise of the Laurentide Ice Sheet with BISICLES (public trunk revision) Tj ETQq1	1 <u>9.7</u> 843	14 rgBT /Ove
30	Ocean circulation drifts in multi-millennial climate simulations: the role of salinity corrections and climate feedbacks. Climate Dynamics, 2019, 52, 1761-1781.	1.7	5
31	Simulating stable carbon isotopes in the ocean component of the FAMOUS general circulation model with MOSES1 (XOAVI). Geoscientific Model Development, 2020, 13, 3529-3552.	1.3	4
32	Effect of orographic gravity wave drag on Northern Hemisphere climate in transient simulations of the last deglaciation. Climate Dynamics, 2022, 59, 2067-2079.	1.7	3
33	Quantifying Spatio-Temporal Boundary Condition Uncertainty for the North American Deglaciation. SIAM-ASA Journal on Uncertainty Ouantification, 2022, 10, 717-744.	1.1	1