
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7303660/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure. Journal of the American Chemical Society, 2000, 122, 10712-10713.	13.7	2,331
2	Novel Mesoporous Materials with a Uniform Distribution of Organic Groups and Inorganic Oxide in Their Frameworks. Journal of the American Chemical Society, 1999, 121, 9611-9614.	13.7	1,641
3	An ordered mesoporous organosilica hybrid material with a crystal-like wall structure. Nature, 2002, 416, 304-307.	27.8	1,305
4	Synthesis and characterization of chiral mesoporous silica. Nature, 2004, 429, 281-284.	27.8	747
5	Cubic Hybrid Organicâ^'Inorganic Mesoporous Crystal with a Decaoctahedral Shape. Journal of the American Chemical Society, 2000, 122, 5660-5661.	13.7	372
6	TEM Studies of Platinum Nanowires Fabricated in Mesoporous Silica MCM-41. Angewandte Chemie - International Edition, 2000, 39, 3107-3110.	13.8	213
7	Complex zeolite structure solved by combining powder diffraction and electron microscopy. Nature, 2006, 444, 79-81.	27.8	200
8	Formation of Highly Ordered Mesoporous Titania Films Consisting of Crystalline Nanopillars with Inverse Mesospace by Structural Transformation. Journal of the American Chemical Society, 2006, 128, 4544-4545.	13.7	138
9	An HREM Study of Channel Structures in Mesoporous Silica SBA-15 and Platinum Wires Produced in the Channels. ChemPhysChem, 2001, 2, 229-231.	2.1	136
10	Organic Dicarboxylate Negative Electrode Materials with Remarkably Small Strain for Highâ€Voltage Bipolar Batteries. Angewandte Chemie - International Edition, 2014, 53, 11467-11472.	13.8	124
11	Characterization of Chiral Mesoporous Materials by Transmission Electron Microscopy. Small, 2005, 1, 233-237.	10.0	120
12	Self-Assembly of Designed Oligomeric Siloxanes with Alkyl Chains into Silica-Based Hybrid Mesostructures. Journal of the American Chemical Society, 2005, 127, 14108-14116.	13.7	116
13	Amino-functionalized SBA-15 type mesoporous silica having nanostructured hexagonal platelet morphology. Chemical Communications, 2006, , 4131.	4.1	112
14	The First Zeolite with Three-Dimensional Intersecting Straight-Channel System of 12-Membered Rings. Journal of the American Chemical Society, 2001, 123, 5370-5371.	13.7	105
15	Monolayer-to-bilayer transformation of silicenes and their structural analysis. Nature Communications, 2016, 7, 10657.	12.8	88
16	Fine Structures of Zeolite-Linde-L (LTL): Surface Structures, Growth Unit and Defects. Chemistry - A European Journal, 2004, 10, 5031-5040.	3.3	84
17	Visible-light-harvesting periodic mesoporous organosilica. Chemical Communications, 2009, , 6032.	4.1	83
18	A Novel Route for Synthesizing Silica Nanotubes with Chiral Mesoporous Wall Structures. Chemistry of Materials, 2007, 19, 1577-1583.	6.7	79

2

#	Article	IF	CITATIONS
19	Racemic Helical Mesoporous Silica Formation by Achiral Anionic Surfactant. Chemistry of Materials, 2006, 18, 241-243.	6.7	76
20	Modern microscopy methods for the structural study of porous materials. Chemical Communications, 2004, , 907.	4.1	74
21	Intergrowths of cubic and hexagonal polytypes of faujasitic zeolites. Journal of the Chemical Society Chemical Communications, 1991, , 1660-1664.	2.0	73
22	Investigation of the Surface Structure of the Zeolites FAU and EMT by High-Resolution Transmission Electron Microscopy. Angewandte Chemie International Edition in English, 1993, 32, 1210-1213.	4.4	65
23	Vapor Infiltration of a Reducing Agent for Facile Synthesis of Mesoporous Pt and Pt-Based Alloys and Its Application for the Preparation of Mesoporous Pt Microrods in Anodic Porous Membranes. Chemistry of Materials, 2008, 20, 1004-1011.	6.7	64
24	Electron Microscopic Study of Intergrowth of MFI and MEL: Crystal Faults in B-MELâ€. Journal of Physical Chemistry B, 1997, 101, 9881-9885.	2.6	63
25	Unique Microstructure of Mesoporous Pt (HI-Pt) Prepared via Direct Physical Casting in Lyotropic Liquid Crystalline Media. Chemistry of Materials, 2005, 17, 6342-6348.	6.7	62
26	Cubosome Description of the Inorganic Mesoporous Structure MCM-48. Chemistry of Materials, 1997, 9, 2066-2070.	6.7	59
27	Synthesis and Structural Characterization of a Highly Ordered Mesoporous Ptâ^'Ru Alloy via "Evaporation-Mediated Direct Templating― Chemistry of Materials, 2007, 19, 1335-1342.	6.7	59
28	Crystal-like periodic mesoporous organosilica bearing pyridine units within the framework. Chemical Communications, 2010, 46, 8163.	4.1	55
29	Atomic Resolution Three-Dimensional Electron Diffraction Microscopy. Physical Review Letters, 2002, 89, 155502.	7.8	54
30	Argon Adsorption on MCM-41 Mesoporous Crystal Studied by In Situ Synchrotron Powder X-ray Diffraction. Journal of Physical Chemistry C, 2008, 112, 10803-10813.	3.1	54
31	Mesoporous silicalite-1 zeolite crystals with unique pore shapes analogous to the morphology. Microporous and Mesoporous Materials, 2007, 106, 174-179.	4.4	53
32	A Periodic Mesoporous Organosilicaâ€Based Donor–Acceptor System for Photocatalytic Hydrogen Evolution. Chemistry - A European Journal, 2009, 15, 13041-13046.	3.3	53
33	Orientational Control of Hexagonally Packed Silica Mesochannels in Lithographically Designed Confined Nanospaces. Angewandte Chemie - International Edition, 2007, 46, 5364-5368.	13.8	52
34	Surface Structure and Crystal Growth of Zeolite Beta C. Angewandte Chemie - International Edition, 2002, 41, 1235-1237.	13.8	48
35	Synthesis and Characterization of Macroporous Photonic Structure that Consists of Azimuthally Shifted Double-Diamond Silica Frameworks. Chemistry of Materials, 2014, 26, 7020-7028.	6.7	44
36	Hybrid ethane–siloxane mesoporous materials with cubic symmetry. Microporous and Mesoporous Materials, 2001, 44-45, 165-172.	4.4	40

#	Article	IF	CITATIONS
37	A Versatile Solid Photosensitizer: Periodic Mesoporous Organosilicas with Ruthenium Tris(bipyridine) Complexes Embedded in the Pore Walls. Advanced Functional Materials, 2016, 26, 5068-5077.	14.9	40
38	Transmission Electron Microscopy Observation on Fine Structure of Zeolite NaA Membrane. Chemistry of Materials, 2006, 18, 922-927.	6.7	39
39	Framework Determination of a Polytype of Zeolite Beta by Using Electron Crystallography. Journal of Physical Chemistry B, 2002, 106, 5673-5678.	2.6	37
40	Self-Assembled Double Ladder Structure Formed Inside Carbon Nanotubes by Encapsulation of H ₈ Si ₈ O ₁₂ . ACS Nano, 2009, 3, 1160-1166.	14.6	36
41	The structural characteristics of Al–Co–Ni decagonal quasicrystals and crystalline approximants. Journal of Alloys and Compounds, 2002, 342, 110-114.	5.5	34
42	Catalytic Activity of Pt/TaB ₂ (0001) for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2013, 52, 4137-4140.	13.8	31
43	Dealumination of Hexagonal (EMT)/Cubic (FAU) Zeolite Intergrowth Materials: A SEM and HRTEM Study. Chemistry of Materials, 1994, 6, 2201-2204.	6.7	30
44	Aging behavior of Cu–Ti–Al alloy observed by transmission electron microscopy. Journal of Materials Science, 2008, 43, 3761-3768.	3.7	30
45	Multilayer Germanenes Formed in Zintlâ€Phase CaGe ₂ by Fluoride Diffusion. ChemistrySelect, 2016, 1, 5579-5583.	1.5	30
46	Electron Microscopy Study of Novel Pt Nanowires Synthesized in the Spaces of Silica Mesoporous Materials. Microscopy and Microanalysis, 2002, 8, 35-39.	0.4	28
47	TEM Study on Zeolite Fine Structures: Homework from Cambridge Days. Topics in Catalysis, 2003, 24, 13-18.	2.8	25
48	Insights into the crystal growth mechanisms of zeolites from combined experimental imaging and theoretical studies. Faraday Discussions, 2007, 136, 125.	3.2	25
49	Structural study of meso-porous materials by electron microscopy. Studies in Surface Science and Catalysis, 2004, 148, 261-288.	1.5	24
50	Mapping of Heterogeneous Chemical States of Lithium in a LiNiO[sub 2]-Based Active Material by Electron Energy-Loss Spectroscopy. Electrochemical and Solid-State Letters, 2010, 13, A115.	2.2	24
51	Crystal structure of μ7-MgZnSm. Journal of Alloys and Compounds, 1999, 285, 172-178.	5.5	23
52	An Analytical Approach to Determine the Pore Shape and Size of MCM-41 Materials from X-ray Diffraction Data. Journal of Physical Chemistry B, 2006, 110, 10630-10635.	2.6	22
53	Design of Molecularly Ordered Framework of Mesoporous Silica with Squared One-Dimensional Channels. Journal of the American Chemical Society, 2008, 130, 201-209.	13.7	20
54	Reverse‣elective Microporous Membrane for Gas Separation. Chemistry - an Asian Journal, 2009, 4, 1070-1077.	3.3	19

#	Article	IF	CITATIONS
55	A new crystalline phase related to an Al–Ni–Co decagonal phase. Journal of Alloys and Compounds, 2001, 325, 145-150.	5.5	17
56	TEM image simulation of mesoporous crystals for structure type identification. Solid State Sciences, 2011, 13, 736-744.	3.2	16
57	Decagonal quasicrystal with ordered body-centred (CsCl-type) hypercubic lattice. Philosophical Magazine Letters, 2000, 80, 577-583.	1.2	15
58	Fluorescent Property of Bulk- and Nanocrystals of Cyanide-bridged Eu(III)Co(III) Heteronuclear Coordination Polymer. Chemistry Letters, 2004, 33, 1182-1183.	1.3	14
59	Structures of Silicaâ€Based Nanoporous Materials Revealed by Microscopy. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 521-536.	1.2	14
60	Lightâ€Harvesting Photocatalysis for Water Oxidation Using Mesoporous Organosilica. Chemistry - A European Journal, 2014, 20, 9130-9136.	3.3	13
61	Quasiperiodic Superstructure with an Ordered Arrangement of Atom Columnar Clusters in an Al-Ni-Ru Decagonal Quasicrystal with 0.4 nm Periodicity. Journal of the Physical Society of Japan, 2000, 69, 2383-2386.	1.6	12
62	Ordered structures in decagonal quasicrystals with simple and body-centered hypercubic lattices. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 312, 1-8.	5.6	12
63	Application of a Water Soluble Alkoxysilane for the Formation of Mesoporous Silica from Nonionic Surfactant Micelles Bearing Cholesterol. Chemistry Letters, 2007, 36, 182-183.	1.3	11
64	High-Pressure Synthesis and Crystal Structure of MoC-Type Tungsten Nitride by Nitridation with Ammonium Chloride. Inorganic Chemistry, 2019, 58, 16379-16386.	4.0	10
65	Inelastic mean free path measurement by STEM-EELS technique using needle-shaped specimen. Ultramicroscopy, 2020, 212, 112955.	1.9	10
66	Synthesis of single crystalline anthracene-silica hybrid and its structural and optical properties. Solid State Sciences, 2011, 13, 729-735.	3.2	9
67	Ultrahigh strength of nanocrystalline iron-based alloys produced by high-pressure torsion. Journal of Materials Science, 2010, 45, 4745-4753.	3.7	8
68	Structure change in Sm–Fe–B–Ti permanent magnet materials induced by HDDR process. Journal of Alloys and Compounds, 1999, 288, 277-285.	5.5	7
69	Studies of anionic surfactant templated mesoporous structures by electron microscopy. Studies in Surface Science and Catalysis, 2005, , 11-18.	1.5	7
70	Hexagonal Ring Submicro- and Nanocrystals of a La–Hexacyanoferrate Coordination Polymer. Chemistry Letters, 2005, 34, 590-591.	1.3	6
71	The crystal structure and electronic properties of a new metastable non-stoichiometric BaAl4-type compound crystallized from amorphous La6Ni34Ge60alloy. Journal of Physics Condensed Matter, 2004, 16, 7917-7930.	1.8	5
72	Separation Behavior of Steam from Hydrogen and Methanol through Mordenite Membrane. Journal of Chemical Engineering of Japan, 2008, 41, 870-877.	0.6	5

TETSU OHSUNA

#	ARTICLE	IF	CITATIONS
73	Growth and fluorination of CaSi ₂ thin film. Japanese Journal of Applied Physics, 2020, 59, SFFC02.	1.5	5
74	Microscopy of Nanoporous Crystals. Springer Handbooks, 2019, , 1391-1450.	0.6	5
75	Transformation of CaSi overgrowth domains to the CaSi ₂ crystal phase via vacuum annealing. Japanese Journal of Applied Physics, 2022, 61, 025506.	1.5	5
76	Change in Molecular Orientation with Condensation of 4,4′-Bis(trihydroxysilyl)biphenyl Crystals. Bulletin of the Chemical Society of Japan, 2009, 82, 1035-1038.	3.2	4
77	A Large Dodecahedral Cluster Containing about 480 Atoms in a 2/1 Cubic Crystalline Approximant. Journal of the Physical Society of Japan, 1998, 67, 1501-1504.	1.6	3
78	HAADF-STEM study on the early stage of precipitation in aged Al-Ag alloys. Journal of Electron Microscopy, 2004, 53, 611-616.	0.9	3
79	Nanowire crystals of tantalum nitride grown in ammonium halide fluxes at high pressures. Applied Physics Letters, 2020, 116, 123102.	3.3	3
80	Synthesis of (M0.33Cu0.67)Sr2YCu2Oy: a novel layered cuprate with a block layer of (As0.33Cu0.67)O0.88. Physica C: Superconductivity and Its Applications, 2000, 336, 33-42.	1.2	2
81	Is electron microscope an efficient magnifying glass for micro- and meso-porous materials?. Studies in Surface Science and Catalysis, 2001, , 61-71.	1.5	1
82	Structural Study of Porous Materials by Electron Microscopy. Studies in Surface Science and Catalysis, 2007, 168, 477-XIII.	1.5	1
83	Crystal structures and electronic properties of Sn ₃ N ₄ polymorphs synthesized <i>via</i> high-pressure nitridation of tin. CrystEngComm, 2020, 22, 3531-3538.	2.6	1
84	Preparation of a new layered cuprate (As0.33Cu0.67)Sr2YCu2Oy and its physical properties. Physica C: Superconductivity and Its Applications, 2000, 341-348, 447-448.	1.2	0