Yuvaraj Natarajan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/730309/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Abrasive water jet piercing of straight and inclined holes on Yttria-Stabilized Zirconia coated Ni-based superalloy. Materials and Manufacturing Processes, 2022, 37, 1175-1189.	2.7	5
2	Optimization of atomized spray cutting fluid eco-friendly turning of Inconel 718 alloy using ARAS and CODAS methods. International Journal of Advanced Manufacturing Technology, 2022, 120, 4551-4564.	1.5	12
3	Simulation of AWJ drilling process using the FEA coupled SPH models: A preliminary study. Materials Today: Proceedings, 2022, , .	0.9	2
4	Insights into drilling film cooling holes on ceramic-coated nickel-based superalloys. Archives of Civil and Mechanical Engineering, 2022, 22, .	1.9	7
5	Influence of Different Abrasives Mixtures on Abrasive Water Jet Drilling of Die Steel. Lecture Notes in Mechanical Engineering, 2021, , 511-519.	0.3	1
6	Use of Atomized Spray Cutting Fluid Technique for the Turning of a Nickel Base Superalloy. Materials and Manufacturing Processes, 2021, 36, 373-380.	2.7	15
7	Influence of Abrasive Water Jet Machining Parameters on Hybrid Polymer Composite. Journal of the Institution of Engineers (India): Series C, 2021, 102, 713-722.	0.7	3
8	Multi objective taguchi–grey relational analysis and krill herd algorithm approaches to investigate the parametric optimization in abrasive water jet drilling of stainless steel. Applied Soft Computing Journal, 2021, 102, 107075.	4.1	27
9	Multi-objective Soft Computing Approaches to Evaluate the Performance of Abrasive Water Jet drilling Parameters on Die Steel. Arabian Journal for Science and Engineering, 2021, 46, 7893.	1.7	7
10	Experimental investigation on abrasive water jet polishing of stainless steel: a preliminary study. International Journal of Surface Science and Engineering, 2021, 15, 67.	0.4	4
11	Abrasive Water Jet Piercing of Superalloys: A Study of Small Diameter Deep Holes. Lecture Notes in Mechanical Engineering, 2021, , 183-196.	0.3	1
12	Optimization of Process Parameters for Turning Hastelloy X under Different Machining Environments Using Evolutionary Algorithms: A Comparative Study. Applied Sciences (Switzerland), 2021, 11, 9725.	1.3	11
13	Investigation of monolayer coated WC inserts on turning Ti-alloy. Materials and Manufacturing Processes, 2020, 35, 826-835.	2.7	14
14	Investigation of surface integrity in end milling of 55NiCrMoV7 die steel under the cryogenic environments. Machining Science and Technology, 2020, 24, 465-488.	1.4	13
15	Abrasive Water Jet Machining process: A state of art of review. Journal of Manufacturing Processes, 2020, 49, 271-322.	2.8	192
16	Abrasive water jet piercing of inclined holes on ceramic coated nickel superalloy: A preliminary study. Manufacturing Letters, 2020, 26, 59-63.	1.1	14
17	Study and evaluation of process parameter on Nimonic 75 alloy by Electrochemical micromachining. IOP Conference Series: Materials Science and Engineering, 2020, 923, 012021.	0.3	2
18	Selection of Heat Transfer Fluids for Solar Thermal Applications Using Multi-Criteria Decision-Making Tools. Journal of Testing and Evaluation, 2020, 48, 595-612.	0.4	8

Yuvaraj Natarajan

#	Article	IF	CITATIONS
19	Investigation of Surface Morphology and Topography Features on Abrasive Water Jet Milled Surface Pattern of SS 304. Journal of Testing and Evaluation, 2020, 48, 2981-2997.	0.4	14
20	Experimental Investigation of Twist Fatigue Characteristics on Piston Rings. International Journal of Vehicle Structures and Systems, 2020, 12, .	0.1	0
21	Impact of Electrical Process Parameter in Electrochemical Micromachining of Nimonic 75 Alloy. International Journal of Vehicle Structures and Systems, 2020, 12, .	0.1	Ο
22	Experimental investigation on cryogenic assisted abrasive aqua jet machining of die steel. FME Transactions, 2020, 48, 954-961.	0.7	0
23	Experimental study of the influence of the process parameters in the milling of Al6082-T6 alloy. Materials and Manufacturing Processes, 2019, 34, 1411-1427.	2.7	32
24	Experimental Investigation on Cryogenic Assisted Abrasive Water Jet Machining of Aluminium Alloy. International Journal of Precision Engineering and Manufacturing - Green Technology, 2019, 6, 415-432.	2.7	18
25	Investigation of AlCrN-Coated Inserts on Cryogenic Turning of Ti-6Al-4V Alloy. Metals, 2019, 9, 1338.	1.0	5
26	Machinability study of abrasive aqua jet parameters on hybrid metal matrix composite. Materials and Manufacturing Processes, 2019, 34, 321-344.	2.7	24
27	Influence of cryogenic reaming process parameters on titanium alloy by using Grey relational analysis. FME Transactions, 2019, 47, 634-640.	0.7	2
28	Investigation of water jet peening process parameters on AL6061-T6. Surface Engineering, 2018, 34, 330-340.	1.1	28
29	Optimisation of abrasive water jet cutting process parameters for AA5083-H32 aluminium alloy using fuzzy TOPSIS method. International Journal of Machining and Machinability of Materials, 2018, 20, 118.	0.1	7
30	Optimisation of abrasive water jet cutting process parameters for AA5083-H32 aluminium alloy using fuzzy TOPSIS method. International Journal of Machining and Machinability of Materials, 2018, 20, 118.	0.1	6
31	Investigation of process parameters influence in abrasive water jet cutting of D2 steel. Materials and Manufacturing Processes, 2017, 32, 151-161.	2.7	31
32	Study and evaluation of abrasive water jet cutting performance on <i>AA5083-H32</i> aluminum alloy by varying the jet impingement angles with different abrasive mesh sizes. Machining Science and Technology, 2017, 21, 385-415.	1.4	32
33	Surface integrity studies on abrasive water jet cutting of AISI D2 steel. Materials and Manufacturing Processes, 2017, 32, 162-170.	2.7	40
34	Influence of Process Parameters on Electrochemical Micromachining of Nimonic 75 Alloy. , 2017, , .		5
35	Cutting of aluminium alloy with abrasive water jet and cryogenic assisted abrasive water jet: A comparative study of the surface integrity approach. Wear, 2016, 362-363, 18-32.	1.5	38
36	Multiresponse Optimization of Abrasive Water Jet Cutting Process Parameters Using TOPSIS Approach. Materials and Manufacturing Processes, 2015, 30, 882-889.	2.7	128

#	Article	IF	CITATIONS
37	Abrasive Water Jet Machining of Al6063/B4C/ZrSiO4 Hybrid Composites: a Study of Machinability and Surface Characterization Analysis. Silicon, 0, , 1.	1.8	11