Sadegh Jamali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7302956/publications.pdf Version: 2024-02-01

		430874	345221
137	1,702	18	36
papers	citations	h-index	g-index
137	137	137	1215
all docs	docs citations	times ranked	citing authors

SADECH JAMALL

#	Article	IF	CITATIONS
1	Removal of System and CT Decaying DC Component in Fault Signal Using Selective Interval Integration. IEEE Transactions on Power Delivery, 2022, 37, 905-912.	4.3	6
2	A Contribution to the Development of High-Voltage dc Circuit Breaker Technologies: A Review of New Considerations. IEEE Industrial Electronics Magazine, 2022, 16, 42-59.	2.6	8
3	Nonâ€unit protection scheme for HVDC transmission lines based on energy of voltage difference. IET Generation, Transmission and Distribution, 2022, 16, 2166-2187.	2.5	5
4	A Novel and Practical Mathematical Equation for Design and Analysis of Lightning Protection System (LPS) Based on Rolling Sphere Method. , 2022, , .		2
5	Nonâ€unit protection method for long transmission lines in MTDC grids. IET Generation, Transmission and Distribution, 2021, 15, 1674-1687.	2.5	12
6	Phase selective protection in microgrids using combined data mining and modal decomposition method. International Journal of Electrical Power and Energy Systems, 2021, 128, 106727.	5.5	5
7	Optimal auto-reclosing time for shunt compensated transmission lines using synchrosqueezing wavelet transform. International Journal of Electrical Power and Energy Systems, 2021, 128, 106744.	5.5	3
8	Using Câ€ŧype filter with partial compensation method for capacity reduction of hybrid power quality conditioner in coâ€phase traction power system. IET Power Electronics, 2021, 14, 2350-2373.	2.1	6
9	Voltageâ€based protection of microgrids using decision tree algorithms. International Transactions on Electrical Energy Systems, 2020, 30, e12274.	1.9	16
10	Modeling a voltage source converter assisted resonant current DC breaker for real time studies. International Journal of Electrical Power and Energy Systems, 2020, 117, 105678.	5.5	11
11	Protection Testing for Multiterminal High-Voltage dc Grid: Procedures and Procedures and Assessment. IEEE Industrial Electronics Magazine, 2020, 14, 46-64.	2.6	10
12	Identification of faulted line section in microgrids using data mining method based on feature discretisation. International Transactions on Electrical Energy Systems, 2020, 30, e12353.	1.9	13
13	Singleâ€end protection algorithm for HVDC transmission lines based on the current difference. IET Generation, Transmission and Distribution, 2020, 14, 4339-4351.	2.5	13
14	Hybrid classifier for fault location in active distribution networks. Protection and Control of Modern Power Systems, 2020, 5, .	7.5	21
15	A Differential Protection Scheme based on Pi-Model for Bipolar HVDC Transmission Lines. , 2020, , .		1
16	Hybrid SVC-HPQC Scheme with Partial Compensation Technique in Co-phase Electric Railway System. , 2019, , .		6
17	Improved Railway Static Power Conditioner Using C-type Filter in Scott Co-phase Traction Power Supply System. , 2019, , .		1
18	Hybrid railway power quality conditioner based on halfâ€bridge converter and asymmetric balanced traction transformer with deadbeat current control. IET Power Electronics, 2019, 12, 3447-3459.	2.1	3

#	Article	IF	CITATIONS
19	Single-End Protection Scheme for LCC- HVDC Transmission Lines Based on High Frequency Components of Transmission Line Current. , 2019, , .		2
20	Protection Method for Radial Distribution Systems With DG Using Local Voltage Measurements. IEEE Transactions on Power Delivery, 2019, 34, 651-660.	4.3	44
21	Protection of transmission lines in multi-terminal HVDC grids using travelling waves morphological gradient. International Journal of Electrical Power and Energy Systems, 2019, 108, 125-134.	5.5	50
22	Flexible Fractional Compensating Mode for Railway Static Power Conditioner in a V/v Traction Power Supply System. IEEE Transactions on Industrial Electronics, 2018, 65, 7963-7974.	7.9	36
23	Dynamic modeling, control design and stability analysis of railway active power quality conditioner. Electric Power Systems Research, 2018, 160, 71-88.	3.6	13
24	Identification of optimal features for fast and accurate classification of power quality disturbances. Measurement: Journal of the International Measurement Confederation, 2018, 116, 565-574.	5.0	59
25	Half-Bridge Power Quality Conditioner for Railway Traction Distribution System Based on a New Balancing Transformer. , 2018, , .		2
26	Fault location method for distribution networks using smart meters. Measurement: Journal of the International Measurement Confederation, 2017, 102, 150-157.	5.0	50
27	A comparison framework for distribution system outage and fault location methods. Electric Power Systems Research, 2017, 145, 19-34.	3.6	100
28	Fault location in active distribution networks using non-synchronized measurements. International Journal of Electrical Power and Energy Systems, 2017, 93, 451-458.	5.5	39
29	Non-communication protection method for meshed and radial distribution networks with synchronous-based DG. International Journal of Electrical Power and Energy Systems, 2017, 93, 468-478.	5.5	39
30	Detection of secondary arc extinction for adaptive single phase autoâ€reclosing based on local voltage behaviour. IET Generation, Transmission and Distribution, 2017, 11, 952-958.	2.5	34
31	Recloser time–current–voltage characteristic for fuse saving in distribution networks with DG. IET Generation, Transmission and Distribution, 2017, 11, 272-279.	2.5	43
32	Self-Adaptive Relaying Scheme of Reclosers for Fuse Saving in Distribution Networks with DG. International Journal of Power and Energy Research, 2017, 1, .	0.4	16
33	Fast fault location for fast restoration of smart electrical distribution grids. , 2016, , .		9
34	An IoT realization in an interdepartmental real time simulation lab for distribution system control and management studies. , 2016, , .		11
35	Emerging smart meters in electrical distribution systems: Opportunities and challenges. , 2016, , .		30
36	A Z-source railway static power conditioner for power quality improvement. , 2016, , .		5

#	Article	IF	CITATIONS
37	An improved fault location method for distribution networks exploiting emerging LV smart meters. , 2016, , .		20
38	A new fault location method for distribution networks using sparse measurements. International Journal of Electrical Power and Energy Systems, 2016, 81, 459-468.	5.5	73
39	A fast and accurate fault location method for distribution networks with dg using genetic algorithms. , 2015, , .		10
40	Resonance assessment in electrified railway systems using comprehensive model of train and overhead catenary system. , 2015, , .		9
41	Comprehensive protection of medium-voltage microgrids. , 2014, , .		7
42	Impedance based fault location method for phase to phase and three phase faults in transmission systems. , 2012, , .		4
43	Measured impedance by distance relay for inter phase faults in the presence of svc on double-circuit lines. , 2012, , .		2
44	A new method for arcing fault location using discrete wavelet transform and wavelet networks. European Transactions on Electrical Power, 2012, 22, 601-615.	1.0	16
45	Security assessment for a cumulative sum-based fault detector in transmission lines. , 2011, , .		12
46	Effects of earthing systems on stray current for corrosion and safety behaviour in practical metro systems. IET Electrical Systems in Transportation, 2011, 1, 69-79.	2.4	50
47	Locus of apparent impedance of distance protection in the presence of SSSC. European Transactions on Electrical Power, 2011, 21, 398-412.	1.0	15
48	Adaptive single pole auto-reclosing using discrete wavelet transform. European Transactions on Electrical Power, 2011, 21, 973-986.	1.0	14
49	Improving Shunt Hybrid Filter Performance Through Reducing Control System Time Delay. Australian Journal of Electrical and Electronics Engineering, 2010, 7, 101-111.	1.2	0
50	A wavelet packet based method for adaptive single-pole auto-reclosing. Journal of Zhejiang University: Science C, 2010, 11, 1016-1024.	0.7	9
51	Dynamic fault location method for distribution networks with distributed generation. Electrical Engineering, 2010, 92, 119-127.	2.0	21
52	Detection and classification of power quality disturbances using discrete wavelet transform and wavelet networks. IET Science, Measurement and Technology, 2010, 4, 193-205.	1.6	200
53	Adaptive Single-pole Auto-reclosure for Transmission Lines Using Sound Phases Currents and Wavelet Packet Transform. Electric Power Components and Systems, 2010, 38, 1558-1576.	1.8	11
54	Robustness of communication aided distance relay with Quadrilateral characteristic against inter phase fault resistance. , 2010, , .		2

#	Article	IF	CITATIONS
55	Comparing series and shunt reactive power compensation via UPFC from distance relay point of view. , 2010, , .		4
56	Adaptive distance protection in presence of SSSC on a transmission line. , 2010, , .		6
57	Adaptive distance protection in presence of STATCOM on a transmission line. , 2010, , .		3
58	Measured impedance by distance relay for inter phase faults in presence of resistive Fault Current Limiter. , 2010, , .		4
59	Modified distance protection in presence of UPFC on a transmission line. , 2010, , .		7
60	Measured impedance by distance relay for inter phase faults in presence of SVC. , 2010, , .		3
61	Impedance based fault location method for single phase to earth faults in transmission systems. , 2010, , .		8
62	Adaptive distance protection in presence of UPFC on a transmission line. , 2010, , .		2
63	New approach to adaptive single pole auto-reclosing of power transmission lines. IET Generation, Transmission and Distribution, 2010, 4, 115.	2.5	67
64	Performance measurement framework for location decisions on supply chain design. , 2009, , .		1
65	Measured impedance by distance relay with positive sequence voltage memory in presence of TCSC. , 2009, , .		4
66	Modified distance protection in presence of SSSC on a transmission line. , 2009, , .		4
67	Comparing impacts of SSSC and statcom on measured impedance at relaying point. , 2009, , .		7
68	Distance relay mal-operation due to TCSC presence at near end of second circuit of double circuit line in inter phase faults. , 2009, , .		2
69	Effects of UPFC on measured impedance by distance relay in double-circuit lines. , 2009, , .		3
70	Modified distance protection due to presence of STATCOM on a transmission line. , 2009, , .		2
71	Measured impedance by distance relay for inter phase faults in presence of SSSC. , 2009, , .		4
72	Distance relay ideal tripping characteristic for inter phase faults in presence of UPFC on next line. , 2009, , .		1

#	Article	IF	CITATIONS
73	Measured impedance for inter phase faults in presence of TCSC considering MOV operation. , 2008, , .		4
74	Measured impedance by distance relay elements in a single phase to ground fault. , 2008, , .		2
75	Measured impedance for inter phase faults on next line and second circuit of a double circuit line. , 2008, , .		0
76	Impact of STATCOM modeling on its effect on distance relay tripping characteristic. , 2008, , .		1
77	Effects of SMES equipped UPFC on measured impedance at relaying point in inter phase faults. , 2008, , .		2
78	Measured impedance by distance relay in presence of inductive fault current limiter. , 2008, , .		2
79	Effects of different earthing schemes on the stray current in rail transit systems. , 2008, , .		19
80	Comparing effects of SVC and STATCOM on distance relay tripping characteristic. , 2008, , .		8
81	Distance relay over-reaching due to TCSC presence on second circuit of double circuit line considering MOV operation. , 2008, , .		1
82	Measured impedance by distance relay in presence of UPFC on next line. , 2008, , .		3
83	Measured impedance by distance relay for inter phase faults in presence of SSSC on a double circuit transmission line. , 2008, , .		2
84	Voltage inversion due to UPFC presence on second circuit of double circuit transmission line causing distance relay mal-operation. , 2008, , .		1
85	Distance Relay Mal-Operation due to Presence of SSSC on Adjacent Lines in Inter Phase Faults. , 2008, , .		4
86	Effects of SMES equipped SSSC on distance relay tripping characteristic. , 2008, , .		3
87	Comparing TCSC placements on double circuit line mid-point and ends from measured impedance point of view. , 2008, , .		1
88	Measured impedance by distance relay for inter phase faults in presence of TCPST. , 2008, , .		1
89	Effects of SMES Equipped UPFC on Distance Relay Tripping Characteristic. , 2008, , .		3
90	Effects of voltage transformers connection point on measured impedance at relaying point for inter phase faults in presence of TCSC. , 2008, , .		2

#	Article	IF	CITATIONS
91	Effects of DSTATCOM on measured impedance at source node of distribution feeder. , 2008, , .		3
92	Effects of SMES equipped STATCOM on distance relay ideal tripping characteristic. , 2008, , .		2
93	Comparing TCSC placements on mid-point and ends of second circuit of double circuit line from measured impedance point of view. , 2008, , .		2
94	Effect of instrument transformers connection point on distance relay operation in presence of SSSC. , 2008, , .		1
95	Voltage inversion due to presence of SSSC on adjacent lines and distance relay mal-operation. , 2008, , .		4
96	Voltage inversion due to presence of TCSC on adjacent lines in inter phase faults and distance relay mal-operation. , 2008, , .		1
97	Measured impedance by distance relay for inter phase faults in presence of STATCOM. , 2008, , .		3
98	Measured impedance by distance relay for inter phase faults in presence of TCSC on next line. , 2008, , .		3
99	Measured impedance at source node of a distribution feeder with Dispersed Generation unit. , 2008, , .		Ο
100	Effect of electrode material on the breakdown voltage of SF <inf>6</inf> -N <inf>2</inf> and SF <inf>6</inf> -CO <inf>2</inf> mixtures in a weakly non-uniform electric field. , 2008, , .		0
101	Robustness of distance relay applied for distribution feeders with Mho characteristic against fault resistance. , 2008, , .		Ο
102	Voltage Inversion due to TCSC Presence on Second Circuit of Double Circuit Line and Distance Relay Mal-Operation Considering MOV Operation. , 2008, , .		1
103	Distance relay ideal tripping characteristic for inter phase faults in presence of SSSC on next line. , 2008, , .		1
104	Distance relay over-reaching due to UPFC presence on second circuit of a double circuit line. , 2008, , .		5
105	Anatomy of a secured wide area backup protection. , 2008, , .		Ο
106	Effect of STATCOM on measured impedance by distance relay in double-circuit lines. , 2008, , .		2
107	Power differential protection as primary protection of transmission lines and busbars. , 2008, , .		6
108	Voltage inversion due to SSSC presence on second circuit of double circuit line causing distance relay mal-operation. , 2007, , .		0

#	Article	IF	CITATIONS
109	Designing MV distribution networks considering voltage, current, and losses constraints. , 2007, , .		0
110	A new control scheme for shunt hybrid power filter. , 2007, , .		3
111	Effect of SSSC on measured impedance of distance relay in double-circuit lines. , 2007, , .		0
112	Short circuit analysis in unbalanced distribution networks. , 2007, , .		1
113	Study of distributed generation type and islanding impact on the operation of radial distribution systems. , 2007, , .		2
114	Over-reaching factor for distance relay with Mho characteristic. , 2007, , .		0
115	Mho Characteristic Shifting and Distance Relay Robustness against Fault Resistance. , 2007, , .		0
116	Measured impedance by distance relay in second protective zone. , 2007, , .		1
117	Distance Relay Tripping Characteristic in Presence of SSSC on Next Line. , 2007, , .		0
118	A fast approach for evaluating reliability indices of radial distribution systems. , 2007, , .		0
119	Comparing TCSC Placements on Line Ends and Mid-Point from Measured Impedance Point of View. , 2007, , .		1
120	Distance Relay Over-Reaching due to TCSC Presence on Second Circuit of Double Circuit Line. , 2007, , .		1
121	Power differential based wide area protection. Electric Power Systems Research, 2007, 77, 1541-1551.	3.6	27
122	Measured Impedance by Distance Relay in Presence of SVC on Transmission Line. Industrial Electronics Society (IECON), Annual Conference of IEEE, 2006, , .	0.0	2
123	Effects of Instrument Transformers Connection point on Measured Impedance by Distance Relay in Presence of SSSC. , 2006, , .		0
124	Effects of SSSC on Distance Relay Tripping Characteristic. , 2006, , .		10
125	Effects of instrument transformers location on measured impedance by distance relay in presence of UPFC. , 2006, , .		2
126	Load Flow Method for Distribution Network Design by Considering Committed Loads. , 2006, , .		5

8

#	Article	IF	CITATIONS
127	Distance Relay Tripping Characteristic in Presence of UPFC. , 2006, , .		4
128	Effects of SSSC on Distance Relay Tripping Characteristic. , 2006, , .		3
129	Distance Relay Over-Reaching due to Installation of TCSC on Next Line. , 2006, , .		5
130	Voltage Inversion Due to Presence of TCSC on Adjacent Lines and Distance Relay Mal-Operation. , 2006, , .		1
131	Optimal Location of TCSCs in a Power System by Means of Genetic Algorithms Considering Loss Reduction. , 2006, , .		0
132	Measured Impedance by Distance Relay Considering Double Model of the Line Capacitance. , 2006, , .		0
133	Optimal Location of TCSCs in a Power System by Means of Genetic Algorithms Considering Loss Reduction. , 2006, , .		7
134	Accurate fault location technique for power transmission lines. IEE Proceedings C: Generation Transmission and Distribution, 1990, 137, 395.	0.3	164
135	Optimal Siting of Recloser and Sectionalizers to Reduce Non-Distributed Energy. , 0, , .		12
136	Robustness of Distance Relay with Quadrilateral Characteristic against Fault Resistance. , 0, , .		17
137	Effects of STATCOM on Distance Relay Tripping Characteristic. , 0, , .		10