Xuelin Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/73029/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highâ€pressure MOCVD growth of InGaN thick films toward the photovoltaic applications. Fundamental Research, 2023, 3, 403-408.	3.3	3
2	Lattice Polarity Manipulation of Quasiâ€vdW Epitaxial GaN Films on Graphene Through Interface Atomic Configuration. Advanced Materials, 2022, 34, e2106814.	21.0	19
3	Correlation between electrical properties and growth dynamics for Si-doped Al-rich AlGaN grown by metal-organic chemical vapor deposition. Superlattices and Microstructures, 2022, 163, 107141.	3.1	8
4	Lattice Polarity Manipulation of Quasiâ€vdW Epitaxial GaN Films on Graphene Through Interface Atomic Configuration (Adv. Mater. 5/2022). Advanced Materials, 2022, 34, .	21.0	0
5	Elastic strain engineered nanomechanical GaN resonators with thermoelastic dissipation dilution up to 600 K. Journal of Applied Physics, 2022, 131, .	2.5	1
6	Polarizationâ€Drivenâ€Orientation Selective Growth of Singleâ€Crystalline IIIâ€Nitride Semiconductors on Arbitrary Substrates. Advanced Functional Materials, 2022, 32, .	14.9	6
7	Low RF loss and low dislocation density of GaN grown on high-resistivity Si substrates. Applied Physics Express, 2022, 15, 031003.	2.4	3
8	Sub-nanometer ultrathin epitaxy of AlGaN and its application in efficient doping. Light: Science and Applications, 2022, 11, 71.	16.6	22
9	Polarizationâ€Drivenâ€Orientation Selective Growth of Singleâ€Crystalline IIIâ€Nitride Semiconductors on Arbitrary Substrates (Adv. Funct. Mater. 14/2022). Advanced Functional Materials, 2022, 32, .	14.9	0
10	Infrared stimulated emission with an ultralow threshold from low-dislocation-density InN films grown on a vicinal GaN substrate. Fundamental Research, 2022, 2, 794-798.	3.3	2
11	A review on the GaN-on-Si power electronic devices. Fundamental Research, 2022, 2, 462-475.	3.3	54
12	Regulation of surface kinetics: rapid growth of n-AlGaN with high conductivity for deep-ultraviolet light emitters. CrystEngComm, 2022, 24, 4251-4255.	2.6	6
13	GaN HEMTs on low resistivity Si substrates with thick buffer layers for RF signal amplification and power conversion. AIP Advances, 2022, 12, .	1.3	4
14	Influence of intrinsic or extrinsic doping on charge state of carbon and its interaction with hydrogen in GaN. Applied Physics Letters, 2022, 120, .	3.3	2
15	Low radio frequency loss and buffer-free GaN directly on physical-vapor-deposition AlN/Si templates. Applied Physics Express, 2022, 15, 081001.	2.4	0
16	Low-Resistive Ohmic Contacts in High-Electron-Mobility AlN/GaN Heterostructures by Suppressing the Oxygen Incorporation. ACS Applied Electronic Materials, 2022, 4, 3632-3639.	4.3	2
17	Realization of high efficiency AlGaN-based multiple quantum wells grown on nano-patterned sapphire substrates. CrystEngComm, 2021, 23, 1201-1206.	2.6	14
18	Epitaxial growth mechanisms of single-crystalline GaN on single-crystalline graphene. CrystEngComm, 2021, 23, 5451-5455.	2.6	5

#	Article	IF	CITATIONS
19	High quality GaN-on-SiC with low thermal boundary resistance by employing an ultrathin AlGaN buffer layer. Applied Physics Letters, 2021, 118, .	3.3	12
20	Carrier Velocity Modulation by Asymmetrical Concave Quantum Barriers to Improve the Performance of AlGaN-Based Deep Ultraviolet Light Emitting Diodes. IEEE Photonics Journal, 2021, 13, 1-8.	2.0	4
21	Control of dislocations in heteroepitaxial AlN films by extrinsic supersaturated vacancies introduced through thermal desorption of heteroatoms. Applied Physics Letters, 2021, 118, .	3.3	11
22	High-mobility nâ^'-GaN drift layer grown on Si substrates. Applied Physics Letters, 2021, 118, .	3.3	5
23	Improved Ohmic contacts to plasma etched high Al fraction n-AlGaN by active surface pretreatment. Applied Physics Letters, 2021, 118, .	3.3	10
24	Polarization-induced hole doping for long-wavelength In-rich InGaN solar cells. Applied Physics Letters, 2021, 119, .	3.3	6
25	High quality AlN with uniform in-plane strain on nano-patterned AlN templates achieved by preset strain modulation. Japanese Journal of Applied Physics, 2021, 60, 120903.	1.5	4
26	Direct-readout pressure sensor based on AlGaN/GaN heterostructure. Microsystem Technologies, 2020, 26, 3189-3192.	2.0	0
27	Stress evolution in AlN growth on nano-patterned sapphire substrates. Applied Physics Express, 2020, 13, 015504.	2.4	13
28	Floating GaN whispering gallery mode micro-ring lasing with Burstein–Moss effect. AIP Advances, 2020, 10, .	1.3	7
29	Three Subband Occupation of the Twoâ€Đimensional Electron Gas in Ultrathin Barrier AlN/GaN Heterostructures. Advanced Functional Materials, 2020, 30, 2004450.	14.9	11
30	Direct evidence of hydrogen interaction with carbon: C–H complex in semi-insulating GaN. Applied Physics Letters, 2020, 116, .	3.3	12
31	High quality AlN film grown on a nano-concave-circle patterned Si substrate with an AlN seed layer. Applied Physics Letters, 2020, 117, .	3.3	13
32	Investigation of carrier compensation traps in n â^' -GaN drift layer by high-temperature deep-level transient spectroscopy. Applied Physics Letters, 2020, 117, .	3.3	7
33	The effect of kink and vertical leakage mechanisms in GaN-on-Si epitaxial layers. Semiconductor Science and Technology, 2020, 35, 085015.	2.0	1
34	Controlled bunching approach for achieving high efficiency active region in AlGaN-based deep ultraviolet light-emitting devices with dual-band emission. Applied Physics Letters, 2020, 116, .	3.3	16
35	Al diffusion at AlN/Si interface and its suppression through substrate nitridation. Applied Physics Letters, 2020, 116, .	3.3	23
36	Grapheneâ€Assisted Epitaxy of Nitrogen Lattice Polarity GaN Films on Nonâ€Polar Sapphire Substrates for Green Light Emitting Diodes. Advanced Functional Materials, 2020, 30, 2001283.	14.9	41

#	Article	IF	CITATIONS
37	Interface charge engineering in down-scaled AlGaN (<6 nm)/GaN heterostructure for fabrication of GaN-based power HEMTs and MIS-HEMTs. Applied Physics Letters, 2020, 116, .	3.3	20
38	Strain-enhanced high <i>Q</i> -factor GaN micro-electromechanical resonator. Science and Technology of Advanced Materials, 2020, 21, 515-523.	6.1	11
39	Quasi-Vertical GaN Schottky Barrier Diode on Silicon Substrate With 10 ¹⁰ High On/Off Current Ratio and Low Specific On-Resistance. IEEE Electron Device Letters, 2020, 41, 329-332.	3.9	51
40	Thermally annealed wafer-scale h-BN films grown on sapphire substrate by molecular beam epitaxy. Applied Physics Letters, 2020, 116, .	3.3	16
41	Full-composition-graded InxGa1â^'xN films grown by molecular beam epitaxy. Applied Physics Letters, 2020, 117, 182101.	3.3	7
42	Vacancy-engineering-induced dislocation inclination in III-nitrides on Si substrates. Physical Review Materials, 2020, 4, .	2.4	20
43	High-Performance Quasi-Vertical GaN Schottky Barrier Diode on Silicon Substrate with a Low Dislocation Density Drift Layer. , 2019, , .		2
44	Migration of carbon from Ga sites to N sites in GaN: a combined PAS and hybrid DFT study. Japanese Journal of Applied Physics, 2019, 58, 090901.	1.5	6
45	Epitaxy of Singleâ€Crystalline GaN Film on CMOSâ€Compatible Si(100) Substrate Buffered by Graphene. Advanced Functional Materials, 2019, 29, 1905056.	14.9	51
46	Impact of Silicon Substrate with Low Resistivity on Vertical Leakage Current in AlGaN/GaN HEMTs. Applied Sciences (Switzerland), 2019, 9, 2373.	2.5	3
47	The sapphire substrate pretreatment effects on high-temperature annealed AlN templates in deep ultraviolet light emitting diodes. CrystEngComm, 2019, 21, 4632-4636.	2.6	8
48	Experimental Evidence of Large Bandgap Energy in Atomically Thin AlN. Advanced Functional Materials, 2019, 29, 1902608.	14.9	21
49	GaNâ€on‧i(100): Epitaxy of Singleâ€Crystalline GaN Film on CMOSâ€Compatible Si(100) Substrate Buffered b Graphene (Adv. Funct. Mater. 42/2019). Advanced Functional Materials, 2019, 29, 1970293.	^{Dy} 14.9	1
50	Planar anisotropic Shubnikov-de-Haas oscillations of two-dimensional electron gas in AlN/GaN heterostructure. Applied Physics Letters, 2019, 115, 152107.	3.3	5
51	Low-temperature epitaxy of transferable high-quality Pd(111) films on hybrid graphene/Cu(111) substrate. Nano Research, 2019, 12, 2712-2717.	10.4	5
52	Period size effect induced crystalline quality improvement of AlN on a nano-patterned sapphire substrate. Japanese Journal of Applied Physics, 2019, 58, 100912.	1.5	12
53	Role of hole trapping in the unintentionally doped GaN layer in suppressing the two-dimensional electron gas degradation in AlGaN/GaN heterostructures on Si. Nanotechnology, 2019, 30, 314002.	2.6	4
54	High performance of AlGaN deep-ultraviolet light emitting diodes due to improved vertical carrier transport by delta-accelerating quantum barriers. Applied Physics Letters, 2019, 114, .	3.3	30

#	Article	IF	CITATIONS
55	Influence of intrinsic or extrinsic doping on lattice locations of carbon in semi-insulating GaN. Applied Physics Express, 2019, 12, 061002.	2.4	8
56	High-temperature annealing induced evolution of strain in AlN epitaxial films grown on sapphire substrates. Applied Physics Letters, 2019, 114, .	3.3	51
57	Deep Ultraviolet Light Source from Ultrathin GaN/AlN MQW Structures with Output Power Over 2 Watt. Advanced Optical Materials, 2019, 7, 1801763.	7.3	43
58	Greatly enhanced performance of AlGaN-based deep ultraviolet light emitting diodes by introducing a polarization modulated electron blocking layer. Optics Express, 2019, 27, A1458.	3.4	17
59	Evolution of traps in TiN/O3-sourced Al2O3/GaN gate structures with thermal annealing temperature. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, 022202.	1.2	3
60	Vertical leakage induced current degradation and relevant traps with large lattice relaxation in AlGaN/GaN heterostructures on Si. Applied Physics Letters, 2018, 112, 032104.	3.3	8
61	High-electron-mobility InN epilayers grown on silicon substrate. Applied Physics Letters, 2018, 112, .	3.3	22
62	Unambiguous Identification of Carbon Location on the N Site in Semi-insulating GaN. Physical Review Letters, 2018, 121, 145505.	7.8	45
63	AlGaN/GaN pressure sensor with a Wheatstone bridge structure. AIP Advances, 2018, 8, .	1.3	10
64	Highâ€Mobility Twoâ€Dimensional Electron Gas at InGaN/InN Heterointerface Grown by Molecular Beam Epitaxy. Advanced Science, 2018, 5, 1800844.	11.2	18
65	Enhanced Hydrogen Detection Based on Mg-Doped InN Epilayer. Sensors, 2018, 18, 2065.	3.8	1
66	Latticeâ€Symmetryâ€Driven Epitaxy of Hierarchical GaN Nanotripods. Advanced Functional Materials, 2017, 27, 1604854.	14.9	17
67	Influence of barrier thickness on luminescence lifetime of the two-dimensional electron gas in InAlN/GaN heterostructures. Superlattices and Microstructures, 2017, 106, 170-173.	3.1	0
68	Exciton emission of quasi-2D InGaN in GaN matrix grown by molecular beam epitaxy. Scientific Reports, 2017, 7, 46420.	3.3	14
69	Enhanced transport properties in InAlGaN/AlN/GaN heterostructures on Si (111) substrates: The role of interface quality. Applied Physics Letters, 2017, 110, .	3.3	11
70	Hot electron assisted vertical leakage/breakdown in AlGaN/GaN heterostructures on Si substrates. Superlattices and Microstructures, 2017, 107, 240-245.	3.1	4
71	Anisotropic strain relaxation and high quality AlGaN/GaN heterostructures on Si (110) substrates. Applied Physics Letters, 2017, 110, .	3.3	5
72	Hot electron induced non-saturation current behavior at high electric field in InAlN/GaN heterostructures with ultrathin barrier. Scientific Reports, 2016, 6, 37415.	3.3	6

#	Article	IF	CITATIONS
73	Edge Dislocations Triggered Surface Instability in Tensile Epitaxial Hexagonal Nitride Semiconductor. ACS Applied Materials & Interfaces, 2016, 8, 34108-34114.	8.0	7
74	Spatial identification of traps in AlGaN/GaN heterostructures by the combination of lateral and vertical electrical stress measurements. Applied Physics Letters, 2016, 108, 042107.	3.3	5
75	Temperature-dependent polarization characteristics in Al0.25Ga0.75N/AlN/GaN heterostructure. Applied Physics Letters, 2016, 108, .	3.3	9
76	Fluorine plasma treatment induced deep level traps and their effect on current transportation in Al0.83In0.17N/AlN/GaN Schottky barrier diodes. Journal Physics D: Applied Physics, 2016, 49, 305103.	2.8	1
77	Positive temperature coefficient of photovoltaic efficiency in solar cells based on InGaN/GaN MQWs. Applied Physics Letters, 2016, 109, .	3.3	17
78	Highâ€Outputâ€Power Ultraviolet Light Source from Quasiâ€2D GaN Quantum Structure. Advanced Materials, 2016, 28, 7978-7983.	21.0	72
79	Growth of high quality and uniformity AlGaN/GaN heterostructures on Si substrates using a single AlGaN layer with low Al composition. Scientific Reports, 2016, 6, 23020.	3.3	52
80	Effect of interface and bulk traps on the <i>C–V</i> characterization of a LPCVD-SiN _x /AlGaN/GaN metal-insulator-semiconductor structure. Semiconductor Science and Technology, 2016, 31, 065014.	2.0	19
81	Lattice-Polarity-Driven Epitaxy of Hexagonal Semiconductor Nanowires. Nano Letters, 2016, 16, 1328-1334.	9.1	35
82	Revealing of the transition from n- to p-type conduction of InN:Mg by photoconductivity effect measurement. Scientific Reports, 2015, 4, 4371.	3.3	25
83	Epitaxial growth of AlN films on sapphire via a multilayer structure adopting a low- and high-temperature alternation technique. CrystEngComm, 2015, 17, 7496-7499.	2.6	53
84	High mobility AlGaN/GaN heterostructures grown on Si substrates using a large lattice-mismatch induced stress control technology. Applied Physics Letters, 2015, 106, .	3.3	55
85	O3-sourced atomic layer deposition of high quality Al2O3 gate dielectric for normally-off GaN metal-insulator-semiconductor high-electron-mobility transistors. Applied Physics Letters, 2015, 106, .	3.3	58
86	Hysteresis phenomena of the two dimensional electron gas density in lattice-matched InAlN/GaN heterostructures. Applied Physics Letters, 2015, 107, 052102.	3.3	5
87	Effects of light illumination on electron velocity of AlGaN/GaN heterostructures under high electric field. Applied Physics Letters, 2014, 105, 242104.	3.3	4
88	Formation of p-n-p junction with ionic liquid gate in graphene. Applied Physics Letters, 2014, 104, .	3.3	10
89	Electronic properties of polycrystalline graphene under large local strain. Applied Physics Letters, 2014, 104, .	3.3	17
90	2.6 μm MBE grown InGaAs detectors with dark current of SRH and TAT. AIP Advances, 2014, 4, .	1.3	22

6

#	Article	IF	CITATIONS
91	Identification of Helicity-Dependent Photocurrents from Topological Surface States in Bi2Se3 Gated by Ionic Liquid. Scientific Reports, 2014, 4, 4889.	3.3	51
92	Deep-level traps induced dark currents in extended wavelength InxGa1â^xAs/InP photodetector. Journal of Applied Physics, 2013, 114, .	2.5	43
93	Magnetotransport properties of high equivalent Al composition AlGaN/GaN heterostructures using AlN/GaN superlattice as a barrier. Journal of Applied Physics, 2013, 114, .	2.5	0
94	Temperature sensitive photoconductivity observed in InN layers. Applied Physics Letters, 2013, 102, .	3.3	17
95	Accurate characterization of room-temperature long range magnetic order in GaN: Mn by magnetic force microscope. Science China Technological Sciences, 2011, 54, 15-18.	4.0	0
96	Influence of Si co-doping on magnetic, electrical and optical properties of Ga1–x Mn x N film grown by MOCVD. Science China Technological Sciences, 2011, 54, 1703-1707.	4.0	1
97	Mechanism of ultrahigh Mn concentration in epitaxially grown wurtzite Ga1â^'xMnxN. Applied Physics Letters, 2010, 97, 222108.	3.3	1
98	Direct observation of room-temperature ferromagnetism of single-phase Ga0.962Mn0.038N by magnetic force microscopy. Journal of Applied Physics, 2010, 108, 093913.	2.5	4
99	Study on the formation of dodecagonal pyramid on nitrogen polar GaN surface etched by hot H3PO4. Applied Physics Letters, 2009, 95, 071114.	3.3	41
100	Structural, optical, and magnetic properties of Cu-implanted GaN films. Journal of Applied Physics, 2009, 105, .	2.5	31
101	Positron annihilation in (Ga, Mn)N: A study of vacancy-type defects. Applied Physics Letters, 2009, 94, .	3.3	23
102	Luminescent properties in the strain adjusted phosphor-free GaN based white light-emitting diode. Applied Physics Letters, 2008, 93, .	3.3	12
103	Step-graded AlGaN vs superlattice: Role of strain relief layer in dynamic on-resistance degradation. Applied Physics Express, 0, , .	2.4	6