
Luis Garzon-Tovar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7301924/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unlocking mixed oxides with unprecedented stoichiometries from heterometallic metal-organic frameworks for the catalytic hydrogenation of CO2. Chem Catalysis, 2021, 1, 364-382.	2.9	18
2	An Efficient Metal–Organic Frameworkâ€Derived Nickel Catalyst for the Light Driven Methanation of CO ₂ . Angewandte Chemie - International Edition, 2021, 60, 26476-26482.	7.2	45
3	An Efficient Metal–Organic Frameworkâ€Derived Nickel Catalyst for the Light Driven Methanation of CO ₂ . Angewandte Chemie, 2021, 133, 26680-26686.	1.6	4
4	Toward Liquid Phase Processable Metal Organic Frameworks: Dream or Reality?. Accounts of Materials Research, 2021, 2, 1133-1140.	5.9	7
5	Frontispiz: An Efficient Metal–Organic Frameworkâ€Derived Nickel Catalyst for the Light Driven Methanation of CO ₂ . Angewandte Chemie, 2021, 133, .	1.6	0
6	Frontispiece: An Efficient Metal–Organic Frameworkâ€Derived Nickel Catalyst for the Light Driven Methanation of CO ₂ . Angewandte Chemie - International Edition, 2021, 60, .	7.2	0
7	Solution processable metal–organic frameworks for mixed matrix membranes using porous liquids. Nature Materials, 2020, 19, 1346-1353.	13.3	181
8	Bimetallic Metal-Organic Framework Mediated Synthesis of Ni-Co Catalysts for the Dry Reforming of Methane. Catalysts, 2020, 10, 592.	1.6	18
9	Spray-Drying Synthesis of MOFs, COFs, and Related Composites. Accounts of Chemical Research, 2020, 53, 1206-1217.	7.6	87
10	MOF-Beads Containing Inorganic Nanoparticles for the Simultaneous Removal of Multiple Heavy Metals from Water. ACS Applied Materials & Interfaces, 2020, 12, 10554-10562.	4.0	89
11	A MOF@COF Composite with Enhanced Uptake through Interfacial Pore Generation. Angewandte Chemie - International Edition, 2019, 58, 9512-9516.	7.2	79
12	A MOF@COF Composite with Enhanced Uptake through Interfacial Pore Generation. Angewandte Chemie, 2019, 131, 9612-9616.	1.6	36
13	Photothermal Activation of Metal–Organic Frameworks Using a UV–Vis Light Source. ACS Applied Materials & Interfaces, 2018, 10, 9555-9562.	4.0	82
14	The photothermal effect in MOFs: covalent post-synthetic modification of MOFs mediated by UV-Vis light under solvent-free conditions. Chemical Communications, 2018, 54, 4184-4187.	2.2	27
15	Core–shell Au/CeO ₂ nanoparticles supported in UiO-66 beads exhibiting full CO conversion at 100 °C. Journal of Materials Chemistry A, 2017, 5, 13966-13970.	5.2	24
16	Composite Salt in Porous Metalâ€Organic Frameworks for Adsorption Heat Transformation. Advanced Functional Materials, 2017, 27, 1606424.	7.8	95
17	Continuous Oneâ€5tep Synthesis of Porous Mâ€XF ₆ â€Based Metalâ€Organic and Hydrogenâ€Bonc Frameworks. Chemistry - A European Journal, 2017, 23, 6829-6835.	led 1.7	28
18	Spray Drying for Making Covalent Chemistry: Postsynthetic Modification of Metal–Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 897-903.	6.6	104

LUIS GARZON-TOVAR

#	Article	IF	CITATIONS
19	Spray drying for making covalent chemistry II: synthesis of covalent–organic framework superstructures and related composites. Chemical Communications, 2017, 53, 11372-11375.	2.2	15
20	A spray-drying continuous-flow method for simultaneous synthesis and shaping of microspherical high nuclearity MOF beads. Reaction Chemistry and Engineering, 2016, 1, 533-539.	1.9	79
21	Reactions and products revealed by NMR spectra of deuterated dimethylsulfoxide with iodomethane in neutral and basic media. Journal of Sulfur Chemistry, 2015, 36, 535-543.	1.0	6
22	Optimised room temperature, water-based synthesis of CPO-27-M metal–organic frameworks with high space-time yields. Journal of Materials Chemistry A, 2015, 3, 20819-20826.	5.2	74
23	Non-classical hydrogen bond (CHâ^™â^™â^™l) directed self-assembly formation of a novel 1D supramolecular polymer, based on a copper complex [Cu{(CH3)2SO}6]I4. Inorganic Chemistry Communication, 2013, 32, 64-67.	1.8	21
24	Hexakis(dimethyl sulfoxide-l̂ºO)zinc(II) polyiodide. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, m618-m618.	0.2	1
25	Synthesis and structure of [Na4(DMSO)15][(I3)3(I)]. Self-assembly of hexacoordinated sodium. Chemical Communications, 2011, 47, 7110.	2.2	9