Alena Luptakova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7301882/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of Biogenic Acid on Concrete Materials. Inzynieria Mineralna, 2021, 1, .	0.2	0
2	Comparison of three different bioleaching systems for Li recovery from lepidolite. Scientific Reports, 2020, 10, 14594.	3.3	35
3	Simultaneous lithium bioleaching and bioaccumulation from lepidolite using microscopic fungus Aspergillus niger. Nova Biotechnologica Et Chimica, 2020, 19, 175-182.	0.1	0
4	Removal of Contaminants from Water by Bacterial Activity. Inzynieria Mineralna, 2020, 2, .	0.2	0
5	Combination of Chemical and Biological-Chemical Methods for Elimination of Metals from Acid Mine Drainage. Inzynieria Mineralna, 2020, 2, .	0.2	1
6	Analyzing the Relationship between Chemical and Biological-Based Degradation of Concrete with Sulfate-Resisting Cement. Polish Journal of Environmental Studies, 2019, 28, 2121-2129.	1.2	10
7	Magnetic sorbents biomineralization on the basis of iron sulphides. Environmental Technology (United Kingdom), 2018, 39, 2916-2925.	2.2	3
8	An Investigation of the Bacterial Influence of Acidithiobacillus Thiooxidans on Concrete Composites. E3S Web of Conferences, 2018, 45, 00021.	0.5	1
9	Correlation analysis of dissolved amounts of main cement elements in concretes after hydrochloric acid attack. AIP Conference Proceedings, 2018, , .	0.4	0
10	Calcium Extraction from Blast-Furnace-Slag-Based Mortars in Sulphate Bacterial Medium. Buildings, 2018, 8, 9.	3.1	4
11	Genetic variability in Acidithiobacillus spp. – a working horse of environmental biotechnologies. Nova Biotechnologica Et Chimica, 2018, 17, 125-131.	0.1	1
12	Contribution to Sustainable Environment through Examination of Durability of Materials in an Aggressive Environment. Energy Procedia, 2017, 107, 351-356.	1.8	0
13	Investigation of slag-based concrete by mathematical analysis considering air pollution prevention. Energy Procedia, 2017, 128, 208-214.	1.8	1
14	Using Mathematical and Numerical Methods towards on the Pipelines' Material Sustainability. Procedia Engineering, 2017, 190, 385-389.	1.2	0
15	Evaluation of the damaged depths of slag-based mortars in aggressive sulphate conditions. IOP Conference Series: Earth and Environmental Science, 2017, 92, 012011.	0.3	0
16	Changes in water absorptivity of slag based cement mortars exposed to sulphur-oxidisingA.thiooxidansbacteria. IOP Conference Series: Materials Science and Engineering, 2017, 251, 012034.	0.6	1
17	Leaching of Ca, Si, Fe and Al from concretes, based on sulphate resistant cement, due to bacterial attack - a correlation study. IOP Conference Series: Earth and Environmental Science, 2017, 92, 012048.	0.3	1
18	Biodeterioration of the Cement Composites. IOP Conference Series: Earth and Environmental Science, 2016, 44, 052025	0.3	0

Alena Luptakova

#	Article	IF	CITATIONS
19	Testing Silica Fume-Based Concrete Composites under Chemical and Microbiological Sulfate Attacks. Materials, 2016, 9, 324.	2.9	18
20	Sulphates Removal from Acid Mine Drainage. IOP Conference Series: Earth and Environmental Science, 2016, 44, 052040.	0.3	7
21	Investigation of the Precipitates on the Concrete Surface due to Sulphate Exposure. Selected Scientific Papers: Journal of Civil Engineering, 2016, 11, 31-38.	0.1	3
22	Study of Dependencies Between Concrete Deterioration Parameters of Fly Ash-Based Specimens. Advances in Intelligent Systems and Computing, 2016, , 229-238.	0.6	2
23	RELATION BETWEEN CONCRETE LEACHABILITY AND pH USING STATISTICAL APPROACH. Journal of Civil Engineering, Environment and Architecture, 2016, , .	0.0	1
24	The Metal And Sulphate Removal From Mine Drainage Waters By Biological-Chemical Ways. Nova Biotechnologica Et Chimica, 2015, 14, 87-95.	0.1	0
25	The Ability of Slag-Portland Cement Composites to Withstand Aggressive Environment. Solid State Phenomena, 2015, 244, 88-93.	0.3	2
26	Bacterial Reduction Of Barium Sulphate By Sulphate-Reducing Bacteria. Nova Biotechnologica Et Chimica, 2015, 14, 135-140.	0.1	5
27	Fly Ash Incorporation into the Concrete Composites in Order to Improve their Environmental Performance. Solid State Phenomena, 2015, 244, 108-113.	0.3	0
28	Application of Granulated Blast Furnace Slag in Cement Composites Exposed to Biogenic Acid Attack. IOP Conference Series: Materials Science and Engineering, 2015, 96, 012014.	0.6	6
29	Impact of calcium ions leaching caused by biogenic acid attack on durability of cement composites. Pollack Periodica, 2015, 10, 125-134.	0.4	0
30	Performance of Fiber-Cement Boards in Biogenic Sulphate Environment. Advanced Materials Research, 2014, 897, 41-44.	0.3	6
31	Different aggressive media influence related to selected characteristics of concrete composites investigation. International Journal of Energy and Environmental Engineering, 2014, 5, 1.	2.5	8
32	Study of durability of fibrous cement based materials exposed to microorganisms. , 2014, , .		1
33	Current Trends in Investigation of Concrete Biodeterioration. Procedia Engineering, 2013, 65, 346-351.	1.2	14
34	Application of Innovative Remediation Processes to Mining Effluents contaminated by Heavy Metals. E3S Web of Conferences, 2013, 1, 25001.	0.5	2
35	Study of Precipitating Methods for Elimination of Heavy Metals from Acid Mine Drainage. Nova Biotechnologica Et Chimica, 2012, 11, 133-138.	0.1	3
36	Study of the Deterioration of Concrete Influenced by Biogenic Sulphate Attack. Procedia Engineering, 2012, 42, 1731-1738.	1.2	16

Alena Luptakova

#	ARTICLE	IF	CITATIONS
37	Application of physical–chemical and biological–chemical methods for heavy metals removal from acid mine drainage. Process Biochemistry, 2012, 47, 1633-1639.	3.7	62
38	Biocorrosion of concrete catch basins and pillars in old mining loads. Journal of Biotechnology, 2010, 150, 253-254.	3.8	1
39	Concrete specimens biodeterioration by bacteria ofAcidithiobacillus thiooxidansandDesulfovibriogenera. Pollack Periodica, 2009, 4, 83-92.	0.4	8
40	Biocorrosion of concrete sewer pipes. Pollack Periodica, 2008, 3, 51-58.	0.4	5
41	Sorption of Copper Ions by Biogenic Iron Sulphides. Advanced Materials Research, 2007, 20-21, 631-634.	0.3	0
42	Remediation of Acid Mine Drainage by Means of Biological and Chemical Methods. Advanced Materials Research, 2007, 20-21, 283-286.	0.3	8
43	Bioremediation of acid mine drainage contaminated by SRB. Hydrometallurgy, 2005, 77, 97-102.	4.3	116
44	The application of sulphate-reducing bacteria in hydrometallurgy. Process Metallurgy, 1999, 9, 665-672.	0.1	0
45	Feasibility of a Thiobacillus ferrooxidans bacterial leaching of a chemically preleached chalcopyrite. International Journal of Mineral Processing, 1991, 32, 133-146.	2.6	9
46	Bio-Corrosion Resistance of Concretes Containing Antimicrobial Ground Granulated Blastfurnace Slag BIOLANOVA and Novel Hybrid H-CEMENT. Solid State Phenomena, 0, 244, 57-64.	0.3	9
47	Deterioration of Cement Composites with Silica Fume Addition due to Chemical and Biogenic Corrosion Processes. Solid State Phenomena, 0, 227, 190-193.	0.3	1
48	Bio-Corrosion of Fibrous Cement Boards and Cement Composites. Solid State Phenomena, 0, 227, 207-210.	0.3	0
49	Development of Compressive Strength of Slag Based Cement Mortars Exposed to an Aggressive Sulphate Environment. , 0, , .		0