
Christopher J Gamper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7301839/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trainee-led Engagement of the Care Team Improves Application of an Institutional Blood Culture Clinical Decision Algorithm to Pediatric Oncology Inpatients: A Single-institution Quality Improvement Project. Pediatric Quality & Safety, 2022, 7, e545.	0.4	2
2	Donor T cell DNMT3a regulates alloreactivity in mouse models of hematopoietic stem cell transplantation. Journal of Clinical Investigation, 2022, 132, .	3.9	4
3	Myeloablative haploidentical BMT with posttransplant cyclophosphamide for hematologic malignancies in children and adults. Blood Advances, 2020, 4, 3913-3925.	2.5	52
4	Effect of increased dose of total body irradiation on graft failure associated with HLA-haploidentical transplantation in patients with severe haemoglobinopathies: a prospective clinical trial. Lancet Haematology,the, 2019, 6, e183-e193.	2.2	111
5	mTORC1 Promotes T-bet Phosphorylation To Regulate Th1 Differentiation. Journal of Immunology, 2017, 198, 3939-3948.	0.4	39
6	Reduced-Intensity Haploidentical Bone Marrow Transplantation with Post-Transplant Cyclophosphamide for Solid Tumors in Pediatric and Young Adult Patients. Biology of Blood and Marrow Transplantation, 2017, 23, 2127-2136.	2.0	17
7	Nonmyeloablative Haploidentical Bone Marrow Transplantation with Post-Transplantation Cyclophosphamide for Pediatric and Young Adult Patients with High-Risk Hematologic Malignancies. Biology of Blood and Marrow Transplantation, 2017, 23, 325-332.	2.0	61
8	Cyclophosphamide improves engraftment in patients with SCD and severe organ damage who undergo haploidentical PBSCT. Blood Advances, 2017, 1, 652-661.	2.5	84
9	Successful Treatment of Recurrent Autoimmune Cytopenias in the Context of Sinus Histiocytosis With Massive Lymphadenopathy Using Sirolimus. Pediatric Blood and Cancer, 2016, 63, 358-360.	0.8	18
10	Hoyeraal-Hreidarsson Syndrome due to PARN Mutations: Fourteen Years of Follow-Up. Pediatric Neurology, 2016, 56, 62-68.e1.	1.0	29
11	De novo DNA methylation by DNA methyltransferase 3a controls early effector CD8 ⁺ T-cell fate decisions following activation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10631-10636.	3.3	107
12	High-dose Cyclophosphamide is Effective Therapy for Pediatric Severe Aplastic Anemia. Journal of Pediatric Hematology/Oncology, 2016, 38, 627-635.	0.3	11
13	Alternative-Donor Hematopoietic Stem Cell Transplantation with Post-Transplantation Cyclophosphamide for Nonmalignant Disorders. Biology of Blood and Marrow Transplantation, 2016, 22, 895-901.	2.0	64
14	Single-Agent Post-Transplantation Cyclophosphamide as Graft-versus-Host Disease Prophylaxis after Human Leukocyte Antigen–Matched Related Bone Marrow Transplantation for Pediatric and Young Adult Patients with Hematologic Malignancies. Biology of Blood and Marrow Transplantation, 2016, 22, 112-118.	2.0	37
15	Dnmt3a deletion cooperates with the Flt3/ITD mutation to drive leukemogenesis in a murine model. Oncotarget, 2016, 7, 69124-69135.	0.8	15
16	Successful Reduced Intensity Alternative Donor Hematopoietic Stem Cell Transplantation with Post-Transplant Cyclophosphamide for Non-Malignant Disorders. Biology of Blood and Marrow Transplantation, 2015, 21, S101-S102.	2.0	0
17	Haploidentical BMT Using Fully Myeloablative Conditioning, T Cell Replete Bone Marrow Grafts, and Post-Transplant Cyclophosphamide (PT/Cy) Has Limited Toxicity and Promising Efficacy in Largest Reported Experience with High Risk Hematologic Malignancies. Biology of Blood and Marrow Transplantation, 2015, 21, S29.	2.0	9
18	Using Haploidentical (haplo) Donors and High-Dose Post-Transplant Cyclophosphamide (PTCy) for Refractory Severe Aplastic Anemia (SAA). Blood, 2015, 126, 2031-2031.	0.6	14

#	Article	IF	CITATIONS
19	Factors Predictive of Relapse of Acute Leukemia in Children after Allogeneic Hematopoietic Cell Transplantation. Biology of Blood and Marrow Transplantation, 2014, 20, 1033-1039.	2.0	17
20	Feasibility of Treating Post-Transplantation Minimal Residual Disease in Children with Acute Leukemia. Biology of Blood and Marrow Transplantation, 2014, 20, 1000-1007.	2.0	9
21	Mammalian Target of Rapamycin (mTOR). , 2014, , 703-711.		0
22	Dnmt3a Deletion Cooperates with the Flt3-ITD Mutation to Drive Leukemogenesis in a Murine Model. Blood, 2014, 124, 3568-3568.	0.6	1
23	Outcomes of Children with Hematologic Malignancies Who Relapse After Allogeneic Hematopoietic Cell Transplantation (AlloHCT). Biology of Blood and Marrow Transplantation, 2013, 19, S306.	2.0	0
24	CNS Disease at Diagnosis May Predict Relapse of Hematologic Malignancies in Pediatric Patients After Allogeneic Hematopoietic Cell Transplantation (AlloHCT). Biology of Blood and Marrow Transplantation, 2013, 19, S255-S256.	2.0	0
25	Haploidentical BMT Using Fully Myeloablative Conditioning, T Cell Replete Grafts, and Post-Transplant Cyclophosphamide (PT/Cy) Has Limited Toxicity and Promising Efficacy in Pediatric Patients with High Risk Hematologic Malignanices. Biology of Blood and Marrow Transplantation, 2013, 19, S165-S166.	2.0	0
26	De Novo DNA Methylation Is Required to Restrict T Helper Lineage Plasticity. Journal of Biological Chemistry, 2012, 287, 22900-22909.	1.6	73
27	All PI3Kinase signaling is not mTOR: dissecting mTOR-dependent and independent signaling pathways in T cells. Frontiers in Immunology, 2012, 3, 312.	2.2	43
28	HLA-haploidentical bone marrow transplantation with posttransplant cyclophosphamide expands the donor pool for patients with sickle cell disease. Blood, 2012, 120, 4285-4291.	0.6	387
29	Outcomes of Children with Hematologic Malignancies Who Relapse After Allogeneic Hematopoietic Cell Transplantation. Blood, 2012, 120, 4205-4205.	0.6	14
30	Factors Predictive of Relapse of Hematologic Malignancies in Pediatric Patients Post Allogeneic Hematopoietic Cell Transplantation. Blood, 2012, 120, 4206-4206.	0.6	0
31	Genetic and biochemical regulation of CD4 T cell effector differentiation: insights from examination of T cell clonal anergy. Immunologic Research, 2010, 47, 162-171.	1.3	5
32	Identification of DNA Methyltransferase 3a as a T Cell Receptor-Induced Regulator of Th1 and Th2 Differentiation. Journal of Immunology, 2009, 183, 2267-2276.	0.4	93
33	Lymphadenopathy as the primary manifestation of malignant transformation in two patients with severe congenital neutropenia. Pediatric Blood and Cancer, 2008, 50, 1072-1075.	0.8	0
34	Expression and function of TRAF-3 splice-variant isoforms in human lymphoma cell lines. Human Immunology, 2001, 62, 1167-1177.	1.2	11