Haipeng Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7301407/publications.pdf

Version: 2024-02-01

186265 254184 3,756 46 28 h-index citations papers

g-index 47 47 47 4252 docs citations times ranked citing authors all docs

43

#	Article	IF	CITATIONS
1	On the optical anisotropy in 2D metal-halide perovskites. Nanoscale, 2022, 14, 752-765.	5.6	15
2	Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells. Science, 2022, 375, 71-76.	12.6	216
3	Chiral Halogenometalate Hybrids for Spin Manipulation. , 2022, , 137-158.		O
4	Chemical Control of Magnetic Ordering in Hybrid Fe–Cl Layered Double Perovskites. Chemistry of Materials, 2022, 34, 2813-2823.	6.7	27
5	Carrier control in Sn–Pb perovskites via 2D cation engineering for all-perovskite tandem solar cells with improved efficiency and stability. Nature Energy, 2022, 7, 642-651.	39.5	121
6	Control of light, spin and charge with chiral metal halide semiconductors. Nature Reviews Chemistry, 2022, 6, 470-485.	30.2	58
7	Spin-Dependent Photovoltaic and Photogalvanic Responses of Optoelectronic Devices Based on Chiral Two-Dimensional Hybrid Organic–Inorganic Perovskites. ACS Nano, 2021, 15, 588-595.	14.6	85
8	Structural Insights on Microwave-Synthesized Antimony-Doped Germanium Nanocrystals. ACS Nano, 2021, 15, 1685-1700.	14.6	7
9	Charge transfer states and carrier generation in 1D organolead iodide semiconductors. Journal of Materials Chemistry A, 2021, 9, 14977-14990.	10.3	15
10	A Multi-Dimensional Perspective on Electronic Doping in Metal Halide Perovskites. ACS Energy Letters, 2021, 6, 1104-1123.	17.4	38
11	Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science, 2021, 371, 1129-1133.	12.6	340
12	Surface lattice engineering through three-dimensional lead iodide perovskitoid for high-performance perovskite solar cells. CheM, 2021, 7, 774-785.	11.7	37
13	Direct Detection of Circularly Polarized Light Using Chiral Copper Chloride–Carbon Nanotube Heterostructures. ACS Nano, 2021, 15, 7608-7617.	14.6	69
14	Spin selectivity in chiral metal–halide semiconductors. Nanoscale, 2021, 13, 18925-18940.	5.6	26
15	Tuning Spin-Polarized Lifetime in Two-Dimensional Metal–Halide Perovskite through Exciton Binding Energy. Journal of the American Chemical Society, 2021, 143, 19438-19445.	13.7	42
16	Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells. Science, 2021, , eabj2637.	12.6	2
17	Origin of Broad-Band Emission and Impact of Structural Dimensionality in Tin-Alloyed Ruddlesden–Popper Hybrid Lead Iodide Perovskites. ACS Energy Letters, 2020, 5, 347-352.	17.4	55
18	Perovskite Electronic Ratchets for Energy Harvesting. Advanced Electronic Materials, 2020, 6, 2000831.	5.1	7

#	Article	IF	CITATIONS
19	Enhancing Charge Transport of 2D Perovskite Passivation Agent for Wideâ€Bandgap Perovskite Solar Cells Beyond 21%. Solar Rrl, 2020, 4, 2070065.	5.8	2
20	Synthesis and Electrocatalytic HER Studies of Carbene-Ligated Cu _{3–<i>x</i>} P Nanocrystals. ACS Applied Materials & ACS (12, 16394-16401).	8.0	19
21	Enhancing Charge Transport of 2D Perovskite Passivation Agent for Wideâ€Bandgap Perovskite Solar Cells Beyond 21%. Solar Rrl, 2020, 4, 2000082.	5.8	79
22	Role of Exciton Binding Energy on LO Phonon Broadening and Polaron Formation in (BA)2PbI4 Ruddlesden–Popper Films. Journal of Physical Chemistry C, 2020, 124, 9496-9505.	3.1	18
23	Transforming energy using quantum dots. Energy and Environmental Science, 2020, 13, 1347-1376.	30.8	76
24	Highly Distorted Chiral Two-Dimensional Tin Iodide Perovskites for Spin Polarized Charge Transport. Journal of the American Chemical Society, 2020, 142, 13030-13040.	13.7	198
25	Strategies to Achieve High Circularly Polarized Luminescence from Colloidal Organic–Inorganic Hybrid Perovskite Nanocrystals. ACS Nano, 2020, 14, 8816-8825.	14.6	94
26	Advances in two-dimensional organic–inorganic hybrid perovskites. Energy and Environmental Science, 2020, 13, 1154-1186.	30.8	420
27	Ultrafast Reaction Mechanisms in Perovskite Based Photocatalytic C–C Coupling. ACS Energy Letters, 2020, 5, 566-571.	17.4	61
28	Bimolecular Additives Improve Wide-Band-Gap Perovskites for Efficient Tandem Solar Cells with CIGS. Joule, 2019, 3, 1734-1745.	24.0	227
29	Enhanced Charge Transport in 2D Perovskites via Fluorination of Organic Cation. Journal of the American Chemical Society, 2019, 141, 5972-5979.	13.7	274
30	Designing Janus Ligand Shells on PbS Quantum Dots using Ligand–Ligand Cooperativity. ACS Nano, 2019, 13, 3839-3846.	14.6	23
31	Sensitizing Singlet Fission with Perovskite Nanocrystals. Journal of the American Chemical Society, 2019, 141, 4919-4927.	13.7	83
32	Enhanced photoredox activity of CsPbBr3 nanocrystals by quantitative colloidal ligand exchange. Journal of Chemical Physics, 2019, 151, 204305.	3.0	52
33	Spin-dependent charge transport through 2D chiral hybrid lead-iodide perovskites. Science Advances, 2019, 5, eaay0571.	10.3	275
34	Infrared Quantum Dots: Progress, Challenges, and Opportunities. ACS Nano, 2019, 13, 939-953.	14.6	153
35	Excitonic Effects in Methylammonium Lead Halide Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 2595-2603.	4.6	107
36	<i>n</i> -Type PbSe Quantum Dots via Post-Synthetic Indium Doping. Journal of the American Chemical Society, 2018, 140, 13753-13763.	13.7	28

#	Article	IF	CITATIONS
37	Impact of Layer Thickness on the Charge Carrier and Spin Coherence Lifetime in Two-Dimensional Layered Perovskite Single Crystals. ACS Energy Letters, 2018, 3, 2273-2279.	17.4	126
38	Hybrid Polymer: Nanocrystal Solar Cells. Materials and Energy, 2018, , 405-444.	0.1	0
39	Tunable Room-Temperature Synthesis of Coinage Metal Chalcogenide Nanocrystals from <i>N</i> -Heterocyclic Carbene Synthons. Chemistry of Materials, 2017, 29, 1396-1403.	6.7	31
40	Bismuth Doping of Germanium Nanocrystals through Colloidal Chemistry. Chemistry of Materials, 2017, 29, 7353-7363.	6.7	26
41	Exposing the Dynamics and Energetics of the N-Heterocyclic Carbene–Nanocrystal Interface. Journal of the American Chemical Society, 2016, 138, 14844-14847.	13.7	34
42	lodide-Passivated Colloidal PbS Nanocrystals Leading to Highly Efficient Polymer:Nanocrystal Hybrid Solar Cells. Chemistry of Materials, 2016, 28, 1897-1906.	6.7	71
43	Tandem and Triple-Junction Polymer:Nanocrystal Hybrid Solar Cells Consisting of Identical Subcells. ACS Applied Materials & Date: ACS Applied Materials & Date: National Subcells & Date: National Subce	8.0	5
44	Silver-Mediated C–H Activation: Oxidative Coupling/Cyclization of N-Arylimines and Alkynes for the Synthesis of Quinolines. Journal of Organic Chemistry, 2012, 77, 501-510.	3.2	101
45	Ultrafast Kinetic DNA Hybridization Assay Based on the Visualization of Threshold Turbidity. Analytical Chemistry, 2012, 84, 3500-3506.	6.5	3
46	Structural Asymmetry and Chiroptical Activity of Chiral Antimonyâ€Halide Hybrids. European Journal of Inorganic Chemistry, 0, , .	2.0	10