
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7301184/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electroanalysis of Fentanyl and Its New Analogs: A Review. Biosensors, 2022, 12, 26.	4.7	6
2	Voltammetry of Several Natural and Synthetic Opioids at a Polarized Ionic Liquid Membrane. ChemElectroChem, 2021, 8, 2519-2525.	3.4	2
3	Screen-printed amalgam electrodes. Sensors and Actuators B: Chemical, 2021, 347, 130583.	7.8	6
4	Doxorubicin determination using two novel voltammetric approaches: A comparative study. Electrochimica Acta, 2020, 330, 135180.	5.2	23
5	Wall-jet ion sensor based on ion transfer processes at a polarized room-temperature ionic liquid membrane. Journal of Electroanalytical Chemistry, 2020, 861, 113948.	3.8	0
6	Detection of antimuscarinic agents tolterodine and fesoterodine and their metabolite 5-hydroxymethyl tolterodine by ion transfer voltammetry at a polarized room-temperature ionic liquid membrane. Electrochimica Acta, 2019, 304, 54-61.	5.2	6
7	Lipophilicity of acetylcholine and related ions examined by ion transfer voltammetry at a polarized room-temperature ionic liquid membrane. Journal of Electroanalytical Chemistry, 2018, 815, 183-188.	3.8	9
8	Voltammetric and capillary electrophoretic study of scavenger kinetics of methylglyoxal by antidiabetic biguanide drugs. Journal of Electroanalytical Chemistry, 2016, 777, 26-32.	3.8	7
9	Extreme Basicity of Biguanide Drugs in Aqueous Solutions: Ion Transfer Voltammetry and DFT Calculations. Journal of Physical Chemistry A, 2016, 120, 7344-7350.	2.5	20
10	Correlation between the standard Gibbs energies of an anion transfer from water to highly hydrophobic ionic liquids and to 1,2-dichloroethane. Journal of Electroanalytical Chemistry, 2014, 714-715, 109-115.	3.8	6
11	Inhibitory Effect of Water on the Oxygen Reduction Catalyzed by Cobalt(II) Tetraphenylporphyrin. Journal of Physical Chemistry A, 2014, 118, 2018-2028.	2.5	16
12	Origin of the correlation between the standard Gibbs energies of ion transfer from water to a hydrophobic ionic liquid and to a molecular solvent. Electrochimica Acta, 2013, 87, 591-598.	5.2	8
13	Mechanistic model of the oxygen reduction catalyzed by a metal-free porphyrin in one- and two-phase liquid systems. Electrochimica Acta, 2013, 110, 816-821.	5.2	11
14	A comparative study of the redox and excited state properties of (nBu4N)2[Mo6X14] and (nBu4N)2[Mo6X8(CF3COO)6] (X = Cl, Br, or I). Dalton Transactions, 2013, 42, 7224.	3.3	123
15	Transfer of heparin polyion across a polarized water/ionic liquid membrane interface. Electrochemistry Communications, 2012, 24, 25-27.	4.7	4
16	Competitive inhibition of a metal-free porphyrin oxygen-reduction catalyst by water. Chemical Communications, 2012, 48, 4094.	4.1	8
17	Thermodynamic driving force effects in the oxygen reduction catalyzed by a metal-free porphyrin. Electrochimica Acta, 2012, 82, 457-462.	5.2	22
18	Charge transfer in porphyrin–calixarene complexes: ultrafast kinetics, cyclic voltammetry, and DFT calculations. Physical Chemistry Chemical Physics, 2011, 13, 6947.	2.8	19

#	Article	lF	CITATIONS
19	Fine tuning of the catalytic effect of a metal-free porphyrin on the homogeneous oxygenreduction. Chemical Communications, 2011, 47, 5446-5448.	4.1	31
20	Electrochemical quantification of 2,6-diisopropylphenol (propofol). Analytica Chimica Acta, 2011, 704, 63-67.	5.4	30
21	Thermodynamic aspects of the electron transfer across the interface between water and a hydrophobic redox-active ionic liquid. Electrochimica Acta, 2011, 58, 606-613.	5.2	8
22	Electron transfer across the polarized interface between water and a hydrophobic redox-active ionic liquid. Electrochemistry Communications, 2010, 12, 1333-1335.	4.7	9
23	Charge-transfer processes at the interface between hydrophobic ionic liquid and water. Pure and Applied Chemistry, 2009, 81, 1473-1488.	1.9	72
24	Amperometric Ionâ€5elective Electrode for Alkali Metal Cations Based on a Roomâ€Temperature Ionic Liquid Membrane. Electroanalysis, 2009, 21, 1977-1983.	2.9	30
25	Electrochemical evidence of catalysis of oxygen reduction at the polarized liquid–liquid interface by tetraphenylporphyrin monoacid and diacid. Electrochemistry Communications, 2009, 11, 1940-1943.	4.7	43
26	Current-polarized ion-selective membranes: The influence of plasticizer and lipophilic background electrolyte on concentration profiles, resistance, and voltage transients. Sensors and Actuators B: Chemical, 2009, 136, 410-418.	7.8	20
27	Voltammetry of Ion Transfer across a Polarized Room-Temperature Ionic Liquid Membrane Facilitated by Valinomycin: Theoretical Aspects and Application. Analytical Chemistry, 2009, 81, 6382-6389.	6.5	48
28	Use of the 1,1′-dimethylferrocene oxidation process for the calibration of the reference electrode potential in organic solvents immiscible with water. Journal of Electroanalytical Chemistry, 2008, 616, 57-63.	3.8	12
29	Mathematical Model of Current-Polarized Ionophore-Based Ion-Selective Membranes. Journal of Physical Chemistry B, 2008, 112, 2008-2015.	2.6	28
30	Potentiometric Sensor for Heparin Polyion:Â Transient Behavior and Response Mechanism. Analytical Chemistry, 2007, 79, 2892-2900.	6.5	38
31	Cyclic voltammetry of ion transfer across a room temperature ionic liquid membrane supported by a microporous filter. Electrochemistry Communications, 2007, 9, 2633-2638.	4.7	56
32	Random nucleation and growth of Pt nanoparticles at the polarised interface between two immiscible electrolyte solutions. Journal of Electroanalytical Chemistry, 2007, 599, 160-166.	3.8	59
33	Counterion binding to protamine polyion at a polarised liquid–liquid interface. Journal of Electroanalytical Chemistry, 2007, 603, 235-242.	3.8	40
34	How To Assess the Limits of Ion-Selective Electrodes:  Method for the Determination of the Ultimate Span, Response Range, and Selectivity Coefficients of Neutral Carrier-Based Cation Selective Electrodes. Analytical Chemistry, 2006, 78, 942-950.	6.5	28
35	Electrocatalysis of the oxygen reduction at a polarised interface between two immiscible electrolyte solutions by electrochemically generated Pt particles. Electrochemistry Communications, 2006, 8, 475-481.	4.7	66
36	Amperometry of Heparin Polyion Using a Rotating Disk Electrode Coated with a Plasticized PVC Membrane. Electroanalysis, 2006, 18, 115-120.	2.9	35

#	Article	IF	CITATIONS
37	Simple, Single Step Potential Difference Measurement for the Determination of the Ultimate Detection Limit of Ion Selective Electrodes. Electroanalysis, 2006, 18, 1245-1253.	2.9	9
38	Amperometric Sensor for Heparin: Sensing Mechanism and Application in Human Blood Plasma Analysis. Electroanalysis, 2006, 18, 1329-1338.	2.9	31
39	Detrimental changes in the composition of hydrogen ion-selective electrode and optode membranes. Analytica Chimica Acta, 2005, 543, 156-166.	5.4	20
40	Determination of urinary 8-hydroxy-2′-deoxyguanosine in obese patients by HPLC with electrochemical detection. Analytica Chimica Acta, 2004, 516, 107-110.	5.4	14
41	Origin of Difference between One-Electron Redox Potentials of Guanosine and Guanine:Â Electrochemical and Quantum Chemical Study. Journal of Physical Chemistry B, 2004, 108, 15896-15899.	2.6	22
42	Electrochemical Oxidation of 8-Oxo-2′-Deoxyguanosine on Glassy Carbon, Gold, Platinum and Tin(IV) Oxide Electrodes. Electroanalysis, 2003, 15, 1555-1560.	2.9	27
43	Cyclic voltammetry of biopolymer heparin at PVC plasticized liquid membrane. Electrochemistry Communications, 2003, 5, 867-870.	4.7	58
44	Charge transfer resistance and differential capacity of the plasticized PVC membrane water interface. Journal of Electroanalytical Chemistry, 2002, 521, 81-86.	3.8	11
45	A junction-free copper reference electrode for electrochemical measurements in o-nitrophenyl octyl ether. Journal of Electroanalytical Chemistry, 2002, 528, 77-81.	3.8	6
46	Evaluation of the standard ion transfer potentials for PVC plasticized membranes from voltammetric measurements. Journal of Electroanalytical Chemistry, 2001, 496, 143-147.	3.8	42
47	Voltammetry of Protonated Anesthetics at a Liquid Membrane: Evaluation of the Drug Propagation. Electroanalysis, 2000, 12, 901-904.	2.9	14
48	Cyclic and convolution potential sweep voltammetry of reversible ion transfer across a liquid membrane. Journal of Electroanalytical Chemistry, 2000, 481, 1-6.	3.8	55
49	Voltammetry of Protonated Anesthetics at a Liquid Membrane: Evaluation of the Drug Propagation. , 2000, 12, 901.		1
50	Polarization phenomena at the waterâ^£o-nitrophenyl octyl ether interface. Journal of Electroanalytical Chemistry, 1999, 463, 232-241.	3.8	29
51	Kinetics of the ferric/ferrous electrode reaction on Nafion®-coated electrodes. Journal of Electroanalytical Chemistry, 1999, 469, 11-17.	3.8	13
52	Substituent effects in cyclic voltammetry of titanocene dichlorides. Journal of Organometallic Chemistry, 1999, 579, 348-355.	1.8	58
53	Cyclic voltammetry of methyl- and trimethylsilyl-substituted zirconocene dichlorides. Journal of Organometallic Chemistry, 1999, 584, 323-328.	1.8	29
54	Adsorption of Gaseous Propylamine on Films of Polypyrrole in Different Oxidation States. Collection of Czechoslovak Chemical Communications, 1999, 64, 1-12.	1.0	0

#	Article	IF	CITATIONS
55	Origin of the effect of ion nature on the differential capacity of an interface between two immiscible electrolyte solutions. Journal of Electroanalytical Chemistry, 1998, 444, 1-5.	3.8	20
56	Negative Impedance of the Nafion Membrane Between Two Electrolyte Solutions. Journal of the Electrochemical Society, 1998, 145, 2740-2746.	2.9	6
57	Transfer of Protonated Anesthetics across the Water o-Nitrophenyl Octyl Ether Interface: Effect of the Ion Structure on the Transfer Kinetics and Pharmacological Activity Analytical Sciences, 1998, 14, 35-41.	1.6	39
58	Amperometric solid-state NO2 sensor based on plasticized PVC matrix containing a hydrophobic electrolyte. Sensors and Actuators B: Chemical, 1997, 41, 1-6.	7.8	25
59	Polarization phenomena at the water o-nitrophenyl octyl ether interface Part II. Role of the solvent viscosity in the kinetics of the tetraethylammonium ion transfer. Journal of Electroanalytical Chemistry, 1997, 426, 37-45.	3.8	34
60	Evaluation of parasitic elements contributing to experimental cell impedance: impedance measurements at interfaces between two immiscible electrolyte solutions. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 3843-3849.	1.7	15
61	Electrocatalytic reduction of halothane. Journal of Electroanalytical Chemistry, 1996, 402, 107-113.	3.8	18
62	Polarization phenomena at the water o-nitrophenyl octyl ether interface. Part 1. Evaluation of the standard Gibbs energies of ion transfer from the solubility and voltammetric measurements. Journal of Electroanalytical Chemistry, 1996, 409, 1-7.	3.8	74
63	Automatic coulometric titrator with optical indication for acidity number determination. Electroanalysis, 1994, 6, 606-608.	2.9	1
64	Indicator and reference platinum solid polymer electrolyte electrodes for a simple solid-state amperometric hydrogen sensor. Journal of Electroanalytical Chemistry, 1994, 379, 301-306.	3.8	25
65	Electrochemically-controlled generation of small amounts of carbon monoxide. Talanta, 1992, 39, 367-369.	5.5	1
66	Sensitive layer for electrochemical detection of hydrogen cyanide. Analytical Chemistry, 1992, 64, 523-527.	6.5	63
67	New electrochemical sensors. Analytical Proceedings, 1991, 28, 366.	0.4	16
68	Determination of total sulphur and nitrogen in crude oil products by oxidative pyrolysis with detection using a metal-plated membrane electrode. Analyst, The, 1988, 113, 501-503.	3.5	6
69	Determination of subnanogram amounts of sulfur dioxide and sulfites by pneumatopotentiometry. Collection of Czechoslovak Chemical Communications, 1986, 51, 2077-2082.	1.0	3
70	A simple laboratory generator for low concentrations of sulphur dioxide. Analytica Chimica Acta, 1985, 166, 305-310.	5.4	4
71	Some potentiometric sensors with low output impedance. Analytica Chimica Acta, 1983, 148, 19-25.	5.4	8