
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/730107/publications.pdf Version: 2024-02-01

IAN LIACKSON

#	Article	IF	CITATIONS
1	Dopachrome tautomerase variants in patients with oculocutaneous albinism. Genetics in Medicine, 2021, 23, 479-487.	1.1	33
2	Genetic background modifies vulnerability to glaucoma-related phenotypes in <i>Lmx1b</i> mutant mice. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	14
3	A custom capture sequence approach for oculocutaneous albinism identifies structural variant alleles at the <i>OCA2</i> locus. Human Mutation, 2021, 42, 1239-1253.	1.1	7
4	A mouse model of brittle cornea syndrome caused by mutation in <i>Zfp469</i> . DMM Disease Models and Mechanisms, 2021, 14, .	1.2	5
5	Fam151b, the mouse homologue of C.elegans menorin gene, is essential for retinal function. Scientific Reports, 2020, 10, 437.	1.6	2
6	The nanophthalmos protein TMEM98 inhibits MYRF self-cleavage and is required for eye size specification. PLoS Genetics, 2020, 16, e1008583.	1.5	17
7	Title is missing!. , 2020, 16, e1008583.		0
8	Title is missing!. , 2020, 16, e1008583.		0
9	Title is missing!. , 2020, 16, e1008583.		0
10	Title is missing!. , 2020, 16, e1008583.		0
11	Missense Mutations in the Human Nanophthalmos Gene <i>TMEM98</i> Cause Retinal Defects in the Mouse. , 2019, 60, 2875.		16
12	A Cell/Cilia Cycle Biosensor for Single-Cell Kinetics Reveals Persistence of Cilia after G1/S Transition Is a General Property in Cells and Mice. Developmental Cell, 2018, 47, 509-523.e5.	3.1	66
13	Mouse Idh3a mutations cause retinal degeneration and reduced mitochondrial function. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	23
14	Genome-wide study of hair colour in UK Biobank explains most of the SNP heritability. Nature Communications, 2018, 9, 5271.	5.8	96
15	KDM3A coordinates actin dynamics with intraflagellar transport to regulate cilia stability. Journal of Cell Biology, 2017, 216, 999-1013.	2.3	33
16	PLAA Mutations Cause a Lethal Infantile Epileptic Encephalopathy by Disrupting Ubiquitin-Mediated Endolysosomal Degradation of Synaptic Proteins. American Journal of Human Genetics, 2017, 100, 706-724.	2.6	37
17	Red alert about lipid's role in skin cancer. Nature, 2017, 549, 337-339.	13.7	1
18	Novel gene function revealed by mouse mutagenesis screens for models of age-related disease. Nature Communications, 2016, 7, 12444.	5.8	79

#	Article	IF	CITATIONS
19	Reconciling diverse mammalian pigmentation patterns with a fundamental mathematical model. Nature Communications, 2016, 7, 10288.	5.8	53
20	Warburg Micro syndrome is caused by RAB18 deficiency or dysregulation. Open Biology, 2015, 5, 150047.	1.5	46
21	The <i>goya</i> mutation identifies distinct novel roles for MAP3K1 in cochlear sensory hair cell development and survival. DMM Disease Models and Mechanisms, 2015, 8, 1555-68.	1.2	12
22	MouseSlc9a8Mutants Exhibit Retinal Defects Due to Retinal Pigmented Epithelium Dysfunction. , 2015, 56, 3015.		13
23	The melanocyte lineage in development and disease. Development (Cambridge), 2015, 142, 620-632.	1.2	286
24	Genetic background influences age-related decline in visual and nonvisual retinal responses, circadian rhythms, and sleep. Neurobiology of Aging, 2015, 36, 380-393.	1.5	61
25	Kdm3a lysine demethylase is an Hsp90 client required for cytoskeletal rearrangements during spermatogenesis. Molecular Biology of the Cell, 2014, 25, 1216-1233.	0.9	29
26	A Conditional Zebrafish MITF Mutation Reveals MITF Levels Are Critical for Melanoma Promotion vs. Regression In Vivo. Journal of Investigative Dermatology, 2014, 134, 133-140.	0.3	86
27	HEATR2 Plays a Conserved Role in Assembly of the Ciliary Motile Apparatus. PLoS Genetics, 2014, 10, e1004577.	1.5	67
28	Spinster Homolog 2 (Spns2) Deficiency Causes Early Onset Progressive Hearing Loss. PLoS Genetics, 2014, 10, e1004688.	1.5	54
29	A Dominant-Negative Mutation of Mouse Lmx1b Causes Glaucoma and Is Semi-lethal via LBD1-Mediated Dimerisation. PLoS Genetics, 2014, 10, e1004359.	1.5	28
30	Loss of <i><scp>ALDH</scp>18A1</i> function is associated with a cellular lipid droplet phenotype suggesting a link between autosomal recessive cutis laxa type 3A and Warburg Micro syndrome. Molecular Genetics & Genomic Medicine, 2014, 2, 319-325.	0.6	19
31	A novel mouse model of Warburg Micro Syndrome reveals roles for RAB18 in eye development and organisation of the neuronal cytoskeleton. DMM Disease Models and Mechanisms, 2014, 7, 711-22.	1.2	38
32	Ex vivo Culture of Mouse Embryonic Skin and Live-imaging of Melanoblast Migration. Journal of Visualized Experiments, 2014, , .	0.2	9
33	Mutation Spectrum in <i>RAB3GAP1</i> , <i>RAB3GAPGAPCorrelations in Warburg Micro Syndrome and Martsolf Syndrome. Human Mutation, 2013, 34, 686-696.</i>	1.1	114
34	A Trans-Acting Protein Effect Causes Severe Eye Malformation in the Mp Mouse. PLoS Genetics, 2013, 9, e1003998.	1.5	11
35	Acute Versus Chronic Loss of Mammalian Azi1/Cep131 Results in Distinct Ciliary Phenotypes. PLoS Genetics, 2013, 9, e1003928.	1.5	89
36	How the leopard gets its spots: a transmembrane peptidase specifies feline pigmentation patterns. Pigment Cell and Melanoma Research, 2013, 26, 438-439.	1.5	0

#	Article	IF	CITATIONS
37	Rac1 Drives Melanoblast Organization during Mouse Development by Orchestrating Pseudopod- Driven Motility and Cell-Cycle Progression. Developmental Cell, 2011, 21, 722-734.	3.1	98
38	P-Rex1 is required for efficient melanoblast migration and melanoma metastasis. Nature Communications, 2011, 2, 555.	5.8	152
39	Mouse genomic variation and its effect on phenotypes and gene regulation. Nature, 2011, 477, 289-294.	13.7	1,461
40	Differentiated melanocyte cell division occurs in vivo and is promoted by mutations in Mitf. Development (Cambridge), 2011, 138, 3579-3589.	1.2	44
41	Ex vivo live imaging of melanoblast migration in embryonic mouse skin. Pigment Cell and Melanoma Research, 2010, 23, 299-301.	1.5	30
42	Genetic determinants of hair and eye colours in the Scottish and Danish populations. BMC Genetics, 2009, 10, 88.	2.7	57
43	Humanized MC1R transgenic mice reveal human specific receptor function. Human Molecular Genetics, 2007, 16, 2341-2348.	1.4	37
44	Regulation of pigmentation in zebrafish melanophores. Pigment Cell & Melanoma Research, 2006, 19, 206-213.	4.0	166
45	Pigmentary Diversity: Identifying the genes causing human diversity. European Journal of Human Genetics, 2006, 14, 979-980.	1.4	9
46	The mouse genome sequence. , 2005, , .		0
47	Novel ENU-induced eye mutations in the mouse: models for human eye disease. Human Molecular Genetics, 2002, 11, 755-767.	1.4	126
48	Dominant role of the niche in melanocyte stem-cell fate determination. Nature, 2002, 416, 854-860.	13.7	825
49	Neural crest progenitors of the melanocyte lineage: coat colour patterns revisited. Development (Cambridge), 2002, 129, 3349-3357.	1.2	72
50	Neural crest progenitors of the melanocyte lineage: coat colour patterns revisited. Development (Cambridge), 2002, 129, 3349-57.	1.2	25
51	Mouse mutagenesis on target. Nature Genetics, 2001, 28, 198-200.	9.4	14
52	Melanocortin 1 receptor variation in the domestic dog. Mammalian Genome, 2000, 11, 24-30.	1.0	194
53	A comparative transcript map and candidates for mutant phenotypes in the Tyrp1 (brown) deletion complex homologous to human 9p21-23. Mammalian Genome, 2000, 11, 58-63.	1.0	3
54	MGF (KIT Ligand) Is a Chemokinetic Factor for Melanoblast Migration into Hair Follicles. Developmental Biology, 2000, 225, 424-436.	0.9	94

#	Article	IF	CITATIONS
55	Sequencing challenge. Nature, 1999, 402, 347-347.	13.7	2
56	Melanocortin receptors and antagonists regulate pigmentation and body weight. BioEssays, 1998, 20, 603-606.	1.2	21
57	White-based brown (Tyrp1 B-w) is a dominant mutation causing reduced hair pigmentation owing to a chromosomal inversion. Mammalian Genome, 1998, 9, 469-471.	1.0	21
58	Activation of the Receptor Tyrosine Kinase Kit Is Required for the Proliferation of Melanoblasts in the Mouse Embryo. Developmental Biology, 1997, 192, 99-107.	0.9	292
59	Sooty foot, a novel mouse mutation that affects the pigmentation of exposed skin, but not hair, maps to Chromosome 2. Mammalian Genome, 1997, 8, 631-635.	1.0	5
60	The retinal pigmented epithelium is required for development and maintenance of the mouse neural retina. Current Biology, 1995, 5, 1286-1295.	1.8	202
61	Variants of the melanocyte–stimulating hormone receptor gene are associated with red hair and fair skin in humans. Nature Genetics, 1995, 11, 328-330.	9.4	919
62	Structure of the Mouse Tyrosinase-Related Protein-2/Dopachrome Tautomerase (Tyrp2/Dct) Gene and Sequence of Two Novel Slaty Alleles. Genomics, 1995, 29, 35-43.	1.3	102
63	Genetics and Molecular Biology of Mouse Pigmentation. Pigment Cell & Melanoma Research, 1994, 7, 73-80.	4.0	54
64	Manifestations of microphthalmia. Nature Genetics, 1994, 8, 209-210.	9.4	12
65	Molecular and Developmental Genetics of Mouse Coat Color. Annual Review of Genetics, 1994, 28, 189-217.	3.2	254
66	Colour-coded switches. Nature, 1993, 362, 587-588.	13.7	65
67	Light (Blt), a Mutation That Causes Melanocyte Death, Affects Stria Vascularis Function in the Mouse Inner Ear. Pigment Cell & Melanoma Research, 1993, 6, 215-225.	4.0	34
68	Mouse Chromosome 4. Mammalian Genome, 1992, 3, S55-S64.	1.0	19
69	Functional Properties of Cloned Melanogenic Proteins. Pigment Cell & Melanoma Research, 1992, 5, 264-270.	4.0	51
70	Mouse coat colour mutations: A molecular genetic resource which spans the centuries. BioEssays, 1991, 13, 439-446.	1.2	43