Elizabeth R Gavis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7300823/publications.pdf

Version: 2024-02-01

66 papers

4,842 citations

30 h-index 60 g-index

88 all docs 88 docs citations

88 times ranked 3512 citing authors

#	Article	IF	CITATIONS
1	Bidirectional communication in oogenesis: a dynamic conversation in mice and Drosophila. Trends in Cell Biology, 2022, 32, 311-323.	3.6	13
2	Computational modeling offers new insight intoÂDrosophila germ granule development. Biophysical Journal, 2022, 121, 1465-1482.	0.2	6
3	The <i>Drosophila</i> Fragile X mental retardation protein modulates the neuronal cytoskeleton to limit dendritic arborization. Development (Cambridge), 2022, 149, .	1.2	1
4	The <i>Drosophila</i> hnRNP F/H homolog Glorund recruits dFMRP to inhibit <i>nanos</i> translation elongation. Nucleic Acids Research, 2022, 50, 7067-7083.	6.5	3
5	Coupled oscillators coordinate collective germline growth. Developmental Cell, 2021, 56, 860-870.e8.	3.1	21
6	Sequence-Independent Self-Assembly of Germ Granule mRNAs into Homotypic Clusters. Molecular Cell, 2020, 78, 941-950.e12.	4.5	58
7	Compartmentalized oskar degradation in the germ plasm safeguards germline development. ELife, 2020, 9, .	2.8	26
8	The ELAV/Hu protein Found in neurons regulates cytoskeletal and ECM adhesion inputs for space-filling dendrite growth. PLoS Genetics, 2020, 16, e1009235.	1.5	14
9	Title is missing!. , 2020, 16, e1009235.		O
10	Title is missing!. , 2020, 16, e1009235.		0
11			
	Title is missing!. , 2020, 16, e1009235.		0
12	Title is missing!. , 2020, 16, e1009235. Title is missing!. , 2020, 16, e1009235.		0
		1.2	
12	Title is missing!., 2020, 16, e1009235. Distinct <i>cis</i> -acting elements mediate targeting and clustering of <i>Drosophila</i>	1.2	0
12	Title is missing!., 2020, 16, e1009235. Distinct <i>>i>cis</i> -acting elements mediate targeting and clustering of <i>Drosophila</i> polar granule mRNAs. Development (Cambridge), 2018, 145, . Stochastic Seeding Coupled with mRNA Self-Recruitment Generates Heterogeneous Drosophila Germ		0 27
12 13 14	Title is missing!., 2020, 16, e1009235. Distinct <i>>i>cis</i> -acting elements mediate targeting and clustering of <i>Drosophila</i> polar granule mRNAs. Development (Cambridge), 2018, 145, . Stochastic Seeding Coupled with mRNA Self-Recruitment Generates Heterogeneous Drosophila Germ Granules. Current Biology, 2018, 28, 1872-1881.e3. Germ Cell-less Promotes Centrosome Segregation to Induce Germ Cell Formation. Cell Reports, 2017,	1.8	O 27 54
12 13 14	Title is missing!. , 2020, 16, e1009235. Distinct <i>>i>cis</i> -acting elements mediate targeting and clustering of <i>Drosophila</i> > polar granule mRNAs. Development (Cambridge), 2018, 145, . Stochastic Seeding Coupled with mRNA Self-Recruitment Generates Heterogeneous Drosophila Germ Granules. Current Biology, 2018, 28, 1872-1881.e3. Germ Cell-less Promotes Centrosome Segregation to Induce Germ Cell Formation. Cell Reports, 2017, 18, 831-839. The Drosophila hnRNP F/H Homolog Glorund Uses Two Distinct RNA-Binding Modes to Diversify Target	1.8 2.9	0 27 54 24

#	Article	IF	CITATIONS
19	A Genome-Wide Screen for Dendritically Localized RNAs Identifies Genes Required for Dendrite Morphogenesis. G3: Genes, Genomes, Genetics, 2016, 6, 2397-2405.	0.8	14
20	Nanos-mediated repression of <i>hid</i> protects larval sensory neurons after a switch in sensitivity to apoptotic signals. Development (Cambridge), 2016, 143, 2147-59.	1.2	16
21	Removal of Drosophila Muscle Tissue from Larval Fillets for Immunofluorescence Analysis of Sensory Neurons and Epidermal Cells. Journal of Visualized Experiments, 2016, , .	0.2	11
22	Fixed and live visualization of RNAs in Drosophila oocytes and embryos. Methods, 2016, 98, 34-41.	1.9	37
23	bicoid mRNA localises to the Drosophila oocyte anterior by random Dynein-mediated transport and anchoring. ELife, 2016, 5, .	2.8	38
24	Specific Localization of the Drosophila Telomere Transposon Proteins and RNAs, Give Insight in Their Behavior, Control and Telomere Biology in This Organism. PLoS ONE, 2015, 10, e0128573.	1.1	10
25	Independent and coordinate trafficking of single Drosophila germ plasm mRNAs. Nature Cell Biology, 2015, 17, 558-568.	4.6	147
26	Extensive Use of RNA-Binding Proteins in <i>Drosophila</i> Sensory Neuron Dendrite Morphogenesis. G3: Genes, Genomes, Genetics, 2014, 4, 297-306.	0.8	26
27	Germ Plasm Anchoring Is a Dynamic State that Requires Persistent Trafficking. Cell Reports, 2013, 5, 1169-1177.	2.9	38
28	Regional Modulation of a Stochastically Expressed Factor Determines Photoreceptor Subtypes in the Drosophila Retina. Developmental Cell, 2013, 25, 93-105.	3.1	44
29	Dynein-Dependent Transport of <i>nanos </i> RNA in <i>Drosophila </i> Sensory Neurons Requires Rumpelstiltskin and the Germ Plasm Organizer Oskar. Journal of Neuroscience, 2013, 33, 14791-14800.	1.7	40
30	Ribosome profiling reveals pervasive and regulated stop codon readthrough in Drosophila melanogaster. ELife, 2013, 2, e01179.	2.8	335
31	Combinatorial use of translational co-factors for cell type-specific regulation during neuronal morphogenesis in Drosophila. Developmental Biology, 2012, 365, 208-218.	0.9	25
32	A late phase of germ plasm accumulation during <i>Drosophila</i> oogenesis requires Lost and Rumpelstiltskin. Development (Cambridge), 2011, 138, 3431-3440.	1.2	44
33	Aubergine is a component of a nanos mRNA localization complex. Developmental Biology, 2011, 349, 46-52.	0.9	34
34	Transport of Germ Plasm on Astral Microtubules Directs Germ Cell Development in Drosophila. Current Biology, 2011, 21, 439-448.	1.8	83
35	A genetic in vivo system to detect asymmetrically distributed RNA. EMBO Reports, 2011, 12, 1167-1174.	2.0	6
36	Multiple mechanisms collaborate to repress <i>nanos</i> translation in the <i>Drosophila</i> ovary and embryo. Rna, 2011, 17, 967-977.	1.6	28

#	Article	IF	Citations
37	Distinguishing direct from indirect roles for <i>bicoid</i> mRNA localization factors. Development (Cambridge), 2010, 137, 169-176.	1.2	35
38	Bazooka regulates microtubule organization and spatial restriction of germ plasm assembly in the Drosophila oocyte. Developmental Biology, 2010, 340, 528-538.	0.9	19
39	The Translational Repressors Nanos and Pumilio Have Divergent Effects on Presynaptic Terminal Growth and Postsynaptic Glutamate Receptor Subunit Composition. Journal of Neuroscience, 2009, 29, 5558-5572.	1.7	59
40	Lighting up mRNA localization in <i>Drosophila </i> oogenesis. Development (Cambridge), 2009, 136, 2493-2503.	1.2	129
41	Glorund interactions in the regulation of gurken and oskar mRNAs. Developmental Biology, 2009, 326, 68-74.	0.9	28
42	Spatial Regulation of nanos Is Required for Its Function in Dendrite Morphogenesis. Current Biology, 2008, 18, 745-750.	1.8	64
43	Changes in bicoid mRNA Anchoring Highlight Conserved Mechanisms during the Oocyte-to-Embryo Transition. Current Biology, 2008, 18, 1055-1061.	1.8	68
44	Dispensability of nanos mRNA localization for abdominal patterning but not for germ cell development. Mechanisms of Development, 2008, 125, 81-90.	1.7	18
45	The dynamics of fluorescently labeled endogenous <i>gurken</i> mRNA in <i>Drosophila</i> . Journal of Cell Science, 2008, 121, 887-894.	1.2	68
46	The <i>Drosophila </i> hnRNP M homolog Rumpelstiltskin regulates <i>nanos </i> hnRNA localization. Development (Cambridge), 2008, 135, 973-982.	1.2	33
47	Glorund, a Drosophila hnRNP F/H Homolog, Is an Ovarian Repressor of nanos Translation. Developmental Cell, 2006, 10, 291-301.	3.1	73
48	Localization of bicoid mRNA in Late Oocytes Is Maintained by Continual Active Transport. Developmental Cell, 2006, 11, 251-262.	3.1	159
49	Staufen does double duty. Nature Structural and Molecular Biology, 2005, 12, 291-292.	3.6	6
50	The nanos translational control element represses translation in somatic cells by a Bearded box-like motif. Developmental Biology, 2005, 282, 207-217.	0.9	13
51	Temporal complexity within a translational control element in the nanos mRNA. Development (Cambridge), 2004, 131, 5849-5857.	1.2	62
52	nanos and pumilio Are Essential for Dendrite Morphogenesis in Drosophila Peripheral Neurons. Current Biology, 2004, 14, 314-321.	1.8	212
53	Live Imaging of Endogenous RNA Reveals a Diffusion and Entrapment Mechanism for nanos mRNA Localization in Drosophila. Current Biology, 2003, 13, 1159-1168.	1.8	378
54	A common translational control mechanism functions in axial patterning and neuroendocrine signaling in <i>Drosophila </i> i>Development (Cambridge), 2002, 129, 3325-3334.	1.2	11

#	Article	IF	CITATIONS
55	A common translational control mechanism functions in axial patterning and neuroendocrine signaling in Drosophila. Development (Cambridge), 2002, 129, 3325-34.	1.2	6
56	Over the rainbow to translational control. , 2001, 8, 387-389.		13
57	Synthesis of the posterior determinant Nanos is spatially restricted by a novel cotranslational regulatory mechanism. Current Biology, 2000, 10, 1311-1314.	1.8	94
58	Overlapping but Distinct RNA Elements Control Repression and Activation of nanos Translation. Molecular Cell, 2000, 5, 457-467.	4.5	98
59	Identification ofcis-Acting Sequences That ControlnanosRNA Localization. Developmental Biology, 1996, 176, 36-50.	0.9	119
60	Pattern Formation: Gurken meets torpedo for the first time. Current Biology, 1995, 5, 1252-1254.	1.8	2
61	Translational regulation of nanos by RNA localization. Nature, 1994, 369, 315-318.	13.7	286
62	Localization of nanos RNA controls embryonic polarity. Cell, 1992, 71, 301-313.	13.5	373
63	An Ultrabithorax protein binds sequences near its own and the Antennapedia P1 promoters. Cell, 1988, 55, 1069-1081.	13.5	193
64	Expression of human \hat{l}^2 -interferon cDNA under the control of a thymidine kinase promoter from herpes simplex virus. Nature, 1982, 297, 598-601.	13.7	36
65	Analysis of transcriptional regulatory signals of the HSV thymidine kinase gene: Identification of an upstream control region. Cell, 1981, 25, 385-398.	13.5	710
66	Expression of the herpes thymidine kinase gene in Xenopus laevis oocytes: an assay for the study of deletion mutants constructed in vitro. Nucleic Acids Research, 1980, 8, 5931-5948.	6.5	183