Juulia Jylhävä

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7300513/publications.pdf

Version: 2024-02-01

81 3,486 27 53 papers citations h-index g-index

95 95 95 6019 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Comparison of two different frailty scales in the longitudinal Swedish Adoption/Twin Study of Aging (SATSA). Scandinavian Journal of Public Health, 2023, 51, 587-594.	2.3	2
2	Protein Nutritional Status and Frailty: A Mendelian Randomization Study. Journal of Nutrition, 2022, 152, 269-275.	2.9	4
3	Early downregulation of hsa-miR-144-3p in serum from drug-naÃ⁻ve Parkinson's disease patients. Scientific Reports, 2022, 12, 1330.	3.3	14
4	Prevalence and Implications of Frailty in Older Adults With Incident Inflammatory Bowel Diseases: A Nationwide Cohort Study. Clinical Gastroenterology and Hepatology, 2022, 20, 2358-2365.e11.	4.4	18
5	Early-Life Factors as Predictors of Age-Associated Deficit Accumulation Across 17 Years From Midlife Into Old Age. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2022, 77, 2281-2287.	3.6	4
6	Metabolite and lipoprotein profiles reveal sex-related oxidative stress imbalance in de novo drug-naive Parkinson's disease patients. Npj Parkinson's Disease, 2022, 8, 14.	5.3	11
7	Development of an Electronic Frailty Index for Hospitalized Older Adults in Sweden. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2022, 77, 2311-2319.	3.6	11
8	COVID-19 prevalence and mortality in longer-term care facilities. European Journal of Epidemiology, 2022, 37, 227-234.	5.7	19
9	DNA methylation signatures of aggression and closely related constructs: A meta-analysis of epigenome-wide studies across the lifespan. Molecular Psychiatry, 2021, 26, 2148-2162.	7.9	21
10	A geroscience approach for Parkinson's disease: Conceptual framework and design of PROPAG-AGEING project. Mechanisms of Ageing and Development, 2021, 194, 111426.	4.6	14
11	Frailty and comorbidity in predicting community <scp>COVID</scp> â€19 mortality in the <scp>U.K.</scp> Biobank: The effect of sampling. Journal of the American Geriatrics Society, 2021, 69, 1128-1139.	2.6	32
12	Epigenome-wide association study of level and change in cognitive abilities from midlife through late life. Clinical Epigenetics, 2021, 13, 85.	4.1	O
13	Clinical biomarkers and associations with healthspan and lifespan: Evidence from observational and genetic data. EBioMedicine, 2021, 66, 103318.	6.1	12
14	Sex differences in biological aging with a focus on human studies. ELife, 2021, 10, .	6.0	146
15	Frailty trajectories in three longitudinal studies of aging: Is the level or the rate of change more predictive of mortality?. Age and Ageing, 2021, 50, 2174-2182.	1.6	16
16	Sex differences in genetic and environmental influences on frailty and its relation to body mass index and education. Aging, 2021, 13, 16990-17023.	3.1	11
17	A genomeâ€wide association study of the frailty index highlights brain pathways in ageing. Aging Cell, 2021, 20, e13459.	6.7	74
18	Heterogeneity of prodromal Parkinson symptoms in siblings of Parkinson disease patients. Npj Parkinson's Disease, 2021, 7, 78.	5.3	2

#	Article	IF	Citations
19	Deciphering the genetic and epidemiological landscape of mitochondrial DNA abundance. Human Genetics, 2021, 140, 849-861.	3.8	47
20	Fatty Acids and Frailty: A Mendelian Randomization Study. Nutrients, 2021, 13, 3539.	4.1	8
21	Frailty and the risk of dementia: is the association explained by shared environmental and genetic factors?. BMC Medicine, 2021, 19, 248.	5.5	11
22	Should we invest in biological age predictors to treat colorectal cancer in older adults?. European Journal of Surgical Oncology, 2020, 46, 316-320.	1.0	16
23	Replicating associations between DNA methylation and body mass index in a longitudinal sample of older twins. International Journal of Obesity, 2020, 44, 1397-1405.	3.4	6
24	Lung-protective ventilation suppresses systemic and hepatic vein levels of cell-free DNA in porcine experimental post-operative sepsis. BMC Pulmonary Medicine, 2020, 20, 206.	2.0	1
25	A decade of epigenetic change in aging twins: Genetic and environmental contributions to longitudinal DNA methylation. Aging Cell, 2020, 19, e13197.	6.7	29
26	Circulating cell-free DNA level predicts all-cause mortality independent of other predictors in the Health 2000 survey. Scientific Reports, 2020, 10, 13809.	3.3	14
27	Age, Frailty, and Comorbidity as Prognostic Factors for Short-Term Outcomes in Patients With Coronavirus Disease 2019 in Geriatric Care. Journal of the American Medical Directors Association, 2020, 21, 1555-1559.e2.	2.5	141
28	Drivers of Frailty from Adulthood into Old Age: Results from a 27-Year Longitudinal Population-Based Study in Sweden. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 1943-1950.	3.6	30
29	Longitudinal trajectories, correlations and mortality associations of nine biological ages across 20-years follow-up. ELife, 2020, 9, .	6.0	177
30	Can markers of biological age predict dependency in old age?. Biogerontology, 2019, 20, 321-329.	3.9	19
31	Functional Aging Index Complements Frailty in Prediction of Entry Into Care and Mortality. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 1980-1986.	3.6	16
32	The frailty index is a predictor of cause-specific mortality independent of familial effects from midlife onwards: a large cohort study. BMC Medicine, 2019, 17, 94.	5.5	46
33	Fcî¼ receptor as a Costimulatory Molecule for T Cells. Cell Reports, 2019, 26, 2681-2691.e5.	6.4	19
34	Longitudinal changes in the genetic and environmental influences on the epigenetic clocks across old age: Evidence from two twin cohorts. EBioMedicine, 2019, 40, 710-716.	6.1	27
35	Neuroticism as a Predictor of Frailty in Old Age: A Genetically Informative Approach. Psychosomatic Medicine, 2019, 81, 799-807.	2.0	3
36	Comprehensive longitudinal study of epigenetic mutations in aging. Clinical Epigenetics, 2019, 11, 187.	4.1	21

#	Article	IF	CITATIONS
37	A Frailty Index for UK Biobank Participants. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 582-587.	3.6	83
38	DNA Methylation and All-Cause Mortality in Middle-Aged and Elderly Danish Twins. Genes, 2018, 9, 78.	2.4	27
39	Body Mass Index and Waist Circumference as Predictors of Disability in Nonagenarians: The Vitality 90+ Study. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, 1569-1574.	3.6	12
40	Biological Age Predictors. EBioMedicine, 2017, 21, 29-36.	6.1	713
41	Obesity accelerates epigenetic aging in middle-aged but not in elderly individuals. Clinical Epigenetics, 2017, 9, 20.	4.1	128
42	Human endogenous retrovirus HERV-K(HML-2) env expression is not associated with markers of immunosenescence. Experimental Gerontology, 2017, 97, 60-63.	2.8	4
43	Frailty index as a predictor of all-cause and cause-specific mortality in a Swedish population-based cohort. Aging, 2017, 9, 2629-2646.	3.1	45
44	The concentration of cell-free DNA in video-EEG patients is dependent on the epilepsy syndrome and duration of epilepsy. Neurological Research, 2016, 38, 45-50.	1.3	12
45	FGF21 is a biomarker for mitochondrial translation and mtDNA maintenance disorders. Neurology, 2016, 87, 2290-2299.	1.1	167
46	Cardiometabolic and Inflammatory Biomarkers as Mediators Between Educational Attainment and Functioning at the Age of 90 Years. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 412-419.	3.6	4
47	Increased Paternal Age at Conception Is Associated with Transcriptomic Changes Involved in Mitochondrial Function in Elderly Individuals. PLoS ONE, 2016, 11, e0167028.	2.5	7
48	Methylomic predictors demonstrate the role of NF- \hat{l}° B in old-age mortality and are unrelated to the aging-associated epigenetic drift. Oncotarget, 2016, 7, 19228-19241.	1.8	9
49	Ageing-associated changes in the human DNA methylome: genomic locations and effects on gene expression. BMC Genomics, 2015, 16, 179.	2.8	110
50	Number of sons contributes to ageing-associated inflammation. Scientific Reports, 2015, 5, 8631.	3.3	8
51	Cytomegalovirus infection accelerates epigenetic aging. Experimental Gerontology, 2015, 72, 227-229.	2.8	35
52	Length of paternal lifespan is manifested in the DNA methylome of their nonagenarian progeny. Oncotarget, 2015, 6, 30557-30567.	1.8	3
53	High Cell-Free DNA Predicts Fatal Outcome among Staphylococcus aureus Bacteraemia Patients with Intensive Care Unit Treatment. PLoS ONE, 2014, 9, e87741.	2.5	36
54	Circulating miR-21, miR-146a and Fas ligand respond to postmenopausal estrogen-based hormone replacement therapy – A study with monozygotic twin pairs. Mechanisms of Ageing and Development, 2014, 143-144, 1-8.	4.6	45

#	Article	IF	CITATIONS
55	Identification of a prognostic signature for old-age mortality by integrating genome-wide transcriptomic data with the conventional predictors: the Vitality 90+ Study. BMC Medical Genomics, 2014, 7, 54.	1.5	17
56	Plasma pentraxin-3 and coagulation and fibrinolysis variables during acute Puumala hantavirus infection and associated thrombocytopenia. Blood Coagulation and Fibrinolysis, 2014, 25, 612-617.	1.0	15
57	Molecular mechanisms associated with the strength of the anti-CMV response in nonagenarians. Immunity and Ageing, 2014, 11 , 2 .	4.2	4
58	Circulating cell-free DNA is associated with cardiometabolic risk factors: The Health 2000 Survey. Atherosclerosis, 2014, 233, 268-271.	0.8	49
59	Determinants of Longevity: Genetics, Biomarkers and Therapeutic Approaches. Current Pharmaceutical Design, 2014, 20, 6058-6070.	1.9	6
60	The pathogenesis of nephropathia epidemica: New knowledge and unanswered questions. Antiviral Research, 2013, 100, 589-604.	4.1	82
61	The concentration of cell-free DNA in focal epilepsy. Epilepsy Research, 2013, 105, 292-298.	1.6	17
62	Cytomegalovirus (CMV)-dependent and -independent changes in the aging of the human immune system: A transcriptomic analysis. Experimental Gerontology, 2013, 48, 305-312.	2.8	15
63	Characterization of the role of distinct plasma cellâ€free <scp>DNA</scp> species in ageâ€associated inflammation and frailty. Aging Cell, 2013, 12, 388-397.	6.7	102
64	Transcriptional Analysis Reveals Gender-Specific Changes in the Aging of the Human Immune System. PLoS ONE, 2013, 8, e66229.	2.5	53
65	Indoleamine 2,3-Dioxygenase Activity and Expression in Patients With Chronic Lymphocytic Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2012, 12, 363-365.	0.4	22
66	Plasma Cell-Free DNA Levels Are Elevated in Acute Puumala Hantavirus Infection. PLoS ONE, 2012, 7, e31455.	2.5	32
67	A Genome-Wide Association Study Identifies UGT1A1 as a Regulator of Serum Cell-Free DNA in Young Adults: The Cardiovascular Risk in Young Finns Study. PLoS ONE, 2012, 7, e35426.	2.5	13
68	Circulating cell-free DNA is associated with mortality and inflammatory markers in nonagenarians: The Vitality 90+ Study. Experimental Gerontology, 2012, 47, 372-378.	2.8	60
69	Heart rate variability is independently associated with C-reactive protein but not with Serum amyloid A. The Cardiovascular Risk in Young Finns Study. European Journal of Clinical Investigation, 2011, 41, 951-957.	3.4	26
70	Aging is associated with quantitative and qualitative changes in circulating cell-free DNA: The Vitality 90+ study. Mechanisms of Ageing and Development, 2011, 132, 20-26.	4.6	77
71	IL-7 concentration is increased in nonagenarians but is not associated with markers of T cell immunosenescence. Experimental Gerontology, 2011, 46, 1000-1002.	2.8	11
72	Aging-associated increase in indoleamine 2,3-dioxygenase (IDO) activity appears to be unrelated to the transcription of the IDO1 or IDO2 genes in peripheral blood mononuclear cells. Immunity and Ageing, 2011, 8, 9.	4.2	15

#	Article	ΙF	CITATIONS
73	High Plasma Level of Long Pentraxin 3 (PTX3) Is Associated with Fatal Disease in Bacteremic Patients: A Prospective Cohort Study. PLoS ONE, 2011, 6, e17653.	2.5	62
74	Fatal Outcome in Bacteremia is Characterized by High Plasma Cell Free DNA Concentration and Apoptotic DNA Fragmentation: A Prospective Cohort Study. PLoS ONE, 2011, 6, e21700.	2.5	70
75	Gene variants as determinants of longevity: focus on the inflammatory factors. Pflugers Archiv European Journal of Physiology, 2010, 459, 239-246.	2.8	18
76	Expression profiling of immune-associated genes in peripheral blood mononuclear cells reveals baseline differences in co-stimulatory signalling between nonagenarians and younger controls: the vitality 90+ study. Biogerontology, 2010, 11, 671-677.	3.9	9
77	Parvovirus Induced Alterations in Nuclear Architecture and Dynamics. PLoS ONE, 2009, 4, e5948.	2.5	31
78	Serum Amyloid A and C-Reactive Protein Concentrations Are Differently Associated with Markers of Autoimmunity in Patients with Primary Sjögren's Syndrome. Journal of Rheumatology, 2009, 36, 2487-2490.	2.0	8
79	Complement factor H 402His variant confers an increased mortality risk in Finnish nonagenarians: The Vitality 90+ study. Experimental Gerontology, 2009, 44, 297-299.	2.8	20
80	Internalization of novel non-viral vector TAT-streptavidin into human cells. BMC Biotechnology, 2007, 7, 1.	3.3	119
81	Dynamics and interactions of parvoviral NS1 protein in the nucleus. Cellular Microbiology, 2007, 9, 1946-1959.	2.1	19