Jingsui Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7300511/publications.pdf

Version: 2024-02-01

110	2,639	27	47
papers	citations	h-index	g-index
157	157 docs citations	157	1463
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	Discovery of metamorphic diamonds in central China: an indication of a > 4000-km-long zone of deep subduction resulting from multiple continental collisions. Terra Nova, 2003, 15, 370-379.	0.9	179
2	Diamonds, native elements and metal alloys from chromitites of the Ray-Iz ophiolite of the Polar Urals. Gondwana Research, 2015, 27, 459-485.	3.0	151
3	Two Ultrahigh-Pressure Metamorphic Events Recognized in the Central Orogenic Belt of China: Evidence from the U-Pb Dating of Coesite-Bearing Zircons. International Geology Review, 2005, 47, 327-343.	1.1	139
4	High-pressure highly reduced nitrides and oxides from chromitite of a Tibetan ophiolite. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19233-19238.	3.3	134
5	Origin of podiform chromitite, a new model based on the Luobusa ophiolite, Tibet. Gondwana Research, 2015, 27, 525-542.	3.0	117
6	Discovery of eclogite at northern margin of Qaidam Basin, NW China. Science Bulletin, 1998, 43, 1755-1760.	1.7	89
7	Recycled crustal zircons from podiform chromitites in the <scp>L</scp> uobusa ophiolite, southern <scp>T</scp> ibet. Island Arc, 2013, 22, 89-103.	0.5	82
8	Origin of ultrahigh pressure and highly reduced minerals in podiform chromitites and associated mantle peridotites of the Luobusa ophiolite, Tibet. Gondwana Research, 2015, 27, 686-700.	3.0	82
9	Dur'ngoi ophiolite in East Kunlun, Northeast Tibetan plateau: Evidence for paleo-Tethyan suture in Northwest China. Journal of Earth Science (Wuhan, China), 2009, 20, 303-331.	1.1	80
10	Unusual mantle mineral group from chromitite orebody Cr-11 in Luobusa ophiolite of Yarlung-Zangbo suture zone, Tibet. Journal of Earth Science (Wuhan, China), 2009, 20, 284-302.	1.1	66
11	Qingsongite, natural cubic boron nitride: The first boron mineral from the Earth's mantle. American Mineralogist, 2014, 99, 764-772.	0.9	58
12	A New HP/LT Metamorphic Terrane in the Northern Altyn Tagh, Western China. International Geology Review, 2005, 47, 371-386.	1.1	56
13	Zircon U-Pb SHRIMP dating of the Yematan batholith in Dulan, North Qaidam, NW China. Science Bulletin, 2004, 49, 1736-1740.	1.7	55
14	Petrogenesis of the Kangjinla peridotite in the Luobusa ophiolite, Southern Tibet. Journal of Asian Earth Sciences, 2011, 42, 553-568.	1.0	45
15	Ultramafic blocks in Sumdo region, Lhasa block, Eastern Tibet plateau: An ophiolite unit. Journal of Earth Science (Wuhan, China), 2009, 20, 332-347.	1.1	44
16	Tectonic Evolution of the Western Yarlung Zangbo Ophiolitic Belt, Tibet: Implications from the Petrology, Mineralogy, and Geochemistry of the Peridotites. Journal of Geology, 2016, 124, 353-376.	0.7	43
17	High-Al and high-Cr podiform chromitites from the western Yarlung-Zangbo suture zone, Tibet: Implications from mineralogy and geochemistry of chromian spinel, and platinum-group elements. Ore Geology Reviews, 2017, 80, 1020-1041.	1.1	41
18	Peridotites, chromitites and diamonds in ophiolites. Nature Reviews Earth & Environment, 2021, 2, 198-212.	12.2	40

#	Article	IF	CITATIONS
19	Diamond-bearing ophiolites and their geological occurrence. Episodes, 2015, 38, 344-364.	0.8	40
20	Ophiolites, diamonds, and ultrahigh-pressure minerals: New discoveries and concepts on upper mantle petrogenesis. Lithosphere, 2018, 10, 3-13.	0.6	38
21	Deep structure and lithospheric shear faults in the East Kunlun-Qiangtang region, northern Tibetan Plateau. Science in China Series D: Earth Sciences, 2001, 44, 1-9.	0.9	36
22	Chromium isotope signature during continental crust subduction recorded in metamorphic rocks. Geochemistry, Geophysics, Geosystems, 2015, 16, 3840-3854.	1.0	36
23	Eclogitic metapelites in the western segment of the north Qaidam Mountains: Evidence on "in situ― relationship between eclogite and its country rock. Science in China Series D: Earth Sciences, 2004, 47, 1102-1112.	0.9	34
24	Finding of high-pressure mafic granulites in the Amdo basement, central Tibet. Science Bulletin, 2010, 55, 3694-3702.	1.7	34
25	Hematite and magnetite precipitates in olivine from the Sulu peridotite: A result of dehydrogenation-oxidation reaction of mantle olivine?. American Mineralogist, 2008, 93, 1051-1060.	0.9	33
26	Diamonds Discovered from High–Cr Podiform Chromitites of Bulqiza, Eastern Mirdita Ophiolite, Albania. Acta Geologica Sinica, 2017, 91, 455-468.	0.8	32
27	Records of Indosinian orogenesis in Lhasa terrane, Tibet. Journal of Earth Science (Wuhan, China), 2009, 20, 348-363.	1.1	30
28	Petrological and Os isotopic constraints on the origin of the Dongbo peridotite massif, Yarlung Zangbo Suture Zone, Western Tibet. Journal of Asian Earth Sciences, 2015, 110, 72-84.	1.0	29
29	Multiple episodes of melting, depletion, and enrichment of the Tethyan mantle: Petrogenesis of the peridotites and chromitites in the Jurassic Skenderbeu massif, Mirdita ophiolite, Albania. Lithosphere, 2018, 10, 54-78.	0.6	28
30	Carbon and nitrogen isotopes and mineral inclusions in diamonds from chromitites of the Mirdita ophiolite (Albania) demonstrate recycling of oceanic crust into the mantle. American Mineralogist, 2019, 104, 485-500.	0.9	28
31	Fourier transform infrared spectroscopy data and carbon isotope characteristics of the ophiolite-hosted diamonds from the Luobusa ophiolite, Tibet, and Ray-Iz ophiolite, Polar Urals. Lithosphere, 2018, 10, 156-169.	0.6	27
32	Mineralogy and geochemistry of peridotites and chromitites in the Aladag Ophiolite (southern) Tj ETQq0 0 0 rgBT 176, 958-974.	Overlock 0.9	26 26
33	Yarlongite: A New Metallic Carbide Mineral. Acta Geologica Sinica, 2009, 83, 52-56.	0.8	25
34	SHRIMP U-Pb zircon dating for Qiashikansayi granodiorite, the northern Altyn Tagh mountains and its geological implications. Science Bulletin, 2005, 50, 440-445.	1.7	24
35	Qusongite (WC): A new mineral. American Mineralogist, 2009, 94, 387-390.	0.9	24
36	Petrology and geochemistry of high Cr# podiform chromitites of Bulqiza, Eastern Mirdita Ophiolite (EMO), Albania. Ore Geology Reviews, 2015, 70, 188-207.	1.1	24

#	Article	IF	CITATIONS
37	Carbon and nitrogen isotope, and mineral inclusion studies on the diamonds from the Pozanti–Karsanti chromitite, Turkey. Contributions To Mineralogy and Petrology, 2018, 173, 1.	1.2	23
38	Bashikaogong-Shimierbulake granitic complex, north Altun, NW China: Geochemistry and zircon SHRIMP ages. Science in China Series D: Earth Sciences, 2006, 49, 1233-1251.	0.9	22
39	Discovery of khondalite series from the western segment of Altyn Tagh and their petrological and geochronological studies. Science in China Series D: Earth Sciences, 2000, 43, 308-316.	0.9	20
40	Origin of Baotoudong syenites in North China Craton: Petrological, mineralogical and geochemical evidence. Science China Earth Sciences, 2016, 59, 95-110.	2.3	20
41	Diamonds and other unusual minerals from peridotites of the Myitkyina ophiolite, Myanmar. Journal of Asian Earth Sciences, 2018, 164, 179-193.	1.0	20
42	Ophiolite-Hosted Diamond: A New Window for Probing Carbon Cycling in the Deep Mantle. Engineering, 2019, 5, 406-420.	3.2	19
43	Discovery and Significance of Diamonds and Moissanites in Chromitite within the Skenderbeu Massif of the Mirdita Zone Ophiolite, West Albania. Acta Geologica Sinica, 2017, 91, 882-897.	0.8	18
44	The shoshonitic volcanic rocks at Hongliuxia: Pulses of the Altyn Tagh fault in Cretaceous?. Science in China Series D: Earth Sciences, 2001, 44, 94-102.	0.9	17
45	Petrogenesis of lherzolites from the Purang ophiolite, Yarlung-Zangbo suture zone, Tibet: origin and significance of ultra-high pressure and other †unusual†minerals in the Neo-Tethyan lithospheric mantle. International Geology Review, 2019, 61, 2184-2210.	1.1	17
46	Geochemistry and geochronology of OIB-type, Early Jurassic magmatism in the Zhangguangcai range, NE China, as a result of continental back-arc extension. Geological Magazine, 2021, 158, 143-157.	0.9	17
47	Geochemistry and tectonic significance of the Gongzhu peridotites in the northern branch of the western Yarlung Zangbo ophiolitic belt, western Tibet. Mineralogy and Petrology, 2017, 111, 729-746.	0.4	15
48	Petrology and geochemistry of the high-Cr podiform chromitites of the Köycegiz ophiolite, southwest Turkey: implications for the multi-stage evolution of the oceanic upper mantle. Mineralogy and Petrology, 2018, 112, 685-704.	0.4	15
49	Silicon-rutile — An ultra-high pressure (UHP) mineral from an ophiolite *. Progress in Natural Science: Materials International, 2003, 13, 528-531.	1.8	14
50	Initial movement of the Karakorum Fault in western Tibet: constraints from SHRIMP U-Pb dating of zircons. Science Bulletin, 2007, 52, 1089-1100.	1.7	14
51	The metamorphic evolution and tectonic significance of the Sumdo HP–UHP metamorphic terrane, central-south Lhasa Block, Tibet. Geological Society Special Publication, 2019, 474, 209-229.	0.8	13
52	Opx–Cpx exsolution textures in lherzolites of the Cretaceous Purang Ophiolite (S. Tibet, China), and the deep mantle origin of Neotethyan abyssal peridotites. International Geology Review, 2020, 62, 665-682.	1.1	13
53	A New Caledonian Khondalite Series in West Kunlun, China: Age Constraints and Tectonic Significance. International Geology Review, 2005, 47, 986-998.	1.1	12
54	Comment on "Comparison of enigmatic diamonds from the tolbachik arc volcano (Kamchatka) and Tibetan ophiolites: Assessing the role of contamination by synthetic materials―by. Gondwana Research, 2020, 79, 301-303.	3.0	12

#	Article	IF	CITATIONS
55	Changes in the cell parameters of antigorite close to its dehydration reaction at subduction zone conditions. American Mineralogist, 2020, 105, 569-582.	0.9	12
56	Petrology and PGE Abundances of Highâ€Cr and Highâ€Al Podiform Chromitites and Peridotites from the Bulqiza Ultramafic Massif, Eastern Mirdita Ophiolite, Albania. Acta Geologica Sinica, 2018, 92, 1063-1081.	0.8	11
57	Precambrian zircons in chromitites of the Cretaceous Aladag ophiolite (Turkey) indicate deep crustal recycling in oceanic mantle. Precambrian Research, 2020, 350, 105838.	1.2	11
58	SiO2 solubility in rutile at high temperature and high pressure. Journal of Earth Science (Wuhan,) Tj ETQq0 0 0 r	gBT /Overl	ock 10 Tf 50
59	Origin of Chromitites in the Songshugou Peridotite Massif, Qinling Orogen (Central China): Mineralogical and Geochemical Evidence. Journal of Earth Science (Wuhan, China), 2019, 30, 476-493.	1.1	10
60	Magnetic properties of serpentinized peridotites from the Dongbo ophiolite, SW Tibet: Implications for sutureâ€∉one magnetic anomalies. Journal of Geophysical Research: Solid Earth, 2017, 122, 4814-4830.	1.4	8
61	The crystal structure of (Fe4Cr4Ni)9C4. Science in China Series D: Earth Sciences, 2005, 48, 338.	0.9	7
62	Nanoscale Diopside and Spinel Exsolution in Olivine from Dunite of the Tethyan Ophiolites, Southwestern Turkey: Implications for the Multi-Stage Process. Journal of Nanoscience and Nanotechnology, 2017, 17, 6587-6596.	0.9	7
63	Tectonic Implications and Petrogenesis of the Various Types of Magmatic Rocks from the Zedang Area in Southern Tibet. Journal of Earth Science (Wuhan, China), 2019, 30, 1125-1143.	1.1	7
64	Metamorphism and Oceanic Crust Exhumation—Constrained by the Jilang Eclogite and Meta-Quartzite from the Sumdo (U)HP Metamorphic Belt. Journal of Earth Science (Wuhan, China), 2019, 30, 510-524.	1.1	7
65	Post-Collisional, Potassic Volcanism in the Saga Area, Western Tibet: Implications for the Nature of the Mantle Source and Geodynamic Setting. Journal of Earth Science (Wuhan, China), 2019, 30, 571-584.	1.1	7
66	Petrological and Os Isotopic Characteristics of Zedong Peridotites in the Eastern Yarlung–Zangbo Suture in Tibet. Acta Geologica Sinica, 2018, 92, 442-461.	0.8	6
67	Mineralogical and isotopic peculiarities of high-Cr chromitites: Implications for a mantle convection genesis of the Bulqiza ophiolite. Lithos, 2021, 398-399, 106305.	0.6	6
68	Genesis and high-pressure evolution of the Köyceğiz ophiolite (SW Turkey): Mineralogical and geochemical characteristics of podiform chromitites. Ore Geology Reviews, 2022, 145, 104912.	1.1	6
69	Mineral inclusions in zircon domains and geological significance of SHRIMP U-Pb dating for coesite-bearing zircons of paragneiss in Sulu terrane, eastern China. Science in China Series D: Earth Sciences, 2005, 48, 175.	0.9	5
70	Petrology and Geochemistry of the Dangqiong Ophiolite, Western Yarlungâ€Zangbo Suture Zone, Tibet, China. Acta Geologica Sinica, 2019, 93, 344-361.	0.8	5
71	Deep drilling in the Dabie-Sulu Ultrahigh Pressure Metamorphic Belt, China. Eos, 2005, 86, 77.	0.1	4
72	Helium Isotopic Composition of the Songduo Eclogites in the Lhasa Terrane, Tibet: Information from the Deep Mantle. Journal of Earth Science (Wuhan, China), 2019, 30, 563-570.	1.1	4

#	Article	IF	CITATIONS
73	Radiolarian Biochronology, Detrital Zircon Geochronological and Geochemical Constraints on Provenance and Depositional Environment of Cherts in the Southern Belt of the Western Yarlung Zangbo Suture Zone, Tibet. Journal of Geology, 2020, 128, 535-562.	0.7	4
74	The Garnet Exsolution Texture and Petrological Investigations on a Typical Pelitic Granulite from Eastern Himalaya Syntaxis. Acta Geologica Sinica, 2016, 90, 250-251.	0.8	3
75	Multi-stage Process of the Bulqiza Chromitites, Eastern Ophiolitic Belt, Albania. Acta Geologica Sinica, 2016, 90, 245-245.	0.8	3
76	Tectonic discrimination of chromian spinels, olivines and pyroxenes in the Northeastern Jiangxi Province ophiolite, South China. Mineralogy and Petrology, 2017, 111, 325-336.	0.4	3
77	Report on the Third IGCPâ€649 International Workshop on the MayarÃâ€Baracoa Ophiolites and Chromitites, Cuba. Acta Geologica Sinica, 2017, 91, 2305-2309.	0.8	3
78	Mineralogy and Geochemistry of the High r Podiform Chromitite from the Cuobuzha Ophiolite, Yarlung Zangbo Suture Zone, Western Tibet, China: Implication for its Origin. Acta Geologica Sinica, 2020, 94, 75-89.	0.8	3
79	New Concepts in Ophiolites, Oceanic Lithosphere and Podiform Chromites. , 2021, , 968-993.		3
80	Early Devonian ultrapotassic magmatism in the North China Craton: geochemical and isotopic evidence for subcontinental lithospheric mantle metasomatism by subducted sediment-derived fluids. Geological Magazine, 2021, 158, 158-174.	0.9	3
81	Fingerprints of the Kerguelen Mantle Plume in Southern Tibet: Evidence from Early Cretaceous Magmatism in the Tethyan Himalaya. Journal of Geology, 2021, 129, 207-231.	0.7	3
82	Diamond and Other Exotic Mineral-Bearing Ophiolites on the Globe: A Key to Understand the Discovery of New Minerals and Formation of Ophiolitic Podiform Chromitite. Crystals, 2021, 11, 1362.	1.0	3
83	The mineral chemistry of pyroxenite xenoliths in the volcanic rocks of Hoh Xil and their significance. Science in China Series D: Earth Sciences, 2001, 44, 128-138.	0.9	2
84	Origin of the Diamonds within Chromitite from the Mirdita Ophiolite (Albania) and its Geological Significance. Acta Geologica Sinica, 2020, 94, 64-65.	0.8	2
85	Petromagnetic Characteristics of Serpentinization and Magnetite Formation at the Zedang Ophiolite in Southern Tibet. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019696.	1.4	2
86	IGCP-649 project held 2018 international workshop and field trip in Brisbane, Australia and New Caledonia. Episodes, 2018, 41, 259-265.	0.8	2
87	A New Window into the Deep Mantle. Journal of Geography (Chigaku Zasshi), 2012, 121, 161-167.	0.1	1
88	Diamond in Oceanic Peridotites and Chromitites: Evidence for Deep Recycled Mantle in the Global Ophiolite Record. Acta Geologica Sinica, 2019, 93, 168-170.	0.8	1
89	Preface: Introduction of IGCP 649 Projectâ€"Diamonds and Recycled Mantle. Journal of Earth Science (Wuhan, China), 2019, 30, 429-430.	1.1	1
90	Peridotites and Chromitites from the Dingqing Ophiolite in the Eastern Segment of Bangong–Nujiang Suture Zone, Tibet: Occurrence Characteristics and Classifications. Acta Geologica Sinica, 2020, 94, 23-25.	0.8	1

#	Article	IF	Citations
91	Tectonic Evolution of Neotethys Ocean: Evidence of Ophiolites and Ocean Plate Stratigraphy from the Northern and Southern belts in the Western Yarlung Zangbo Suture Zone, Tibet. Acta Geologica Sinica, 2020, 94, 30-30.	0.8	1
92	Geochronology and Geochemistry of Gabbros from Moaâ€Baracoa Ophiolitic Massif, Eastern Cuba: Implication for Early Cretaceous SSZ Magmatism. Acta Geologica Sinica, 2020, 94, 47-48.	0.8	1
93	A trip through Oceanic Lithosphere: 2019 international workshop and field trip of IGCP 649 in Muscat, Oman. Episodes, 2021, 44, 189-197.	0.8	1
94	Microdiamonds in Alkalic Dolerites from the North China Craton: FTIR and C Isotopic Characteristics. Crystals, 2021, 11, 1325.	1.0	1
95	Morphology and FTIR Characteristics of the Alluvial Diamond from the Yangtze Craton, China. Crystals, 2022, 12, 539.	1.0	1
96	Compositional Variation and Mineral Chemistry of the Jinshajiang and Lancangjiang Serpentinites, Yunnan Province, SW China. Acta Geologica Sinica, 2014, 88, 1705-1728.	0.8	0
97	The Characteristics of Yongzhu-Guomang Lake Ophiolitic Melange in Bangong-Nujiang Suture, Xizang(Tibet), China. Acta Geologica Sinica, 2016, 90, 209-209.	0.8	0
98	Tectonic Evolution of the Dongbo Ophiolite in Western Yarlung Zangbo Suture Zone, Xizang (Tibet). Acta Geologica Sinica, 2016, 90, 221-221.	0.8	0
99	Geological Occurrence of Diamond-bearing Ophiolites. Acta Geologica Sinica, 2016, 90, 246-246.	0.8	0
100	He Grenville Orogenesis Recorded by Monazite from the Paragneiss of North Qaidam UHP Metamorphic Belt, Western China. Acta Geologica Sinica, 2016, 90, 224-226.	0.8	0
101	Discovery of a CalrO ₃ â€type Al ₂ O ₃ phase that implies crustâ€mantle recycling in ophioliteâ€hosted corundum from the Luobusa ophiolite, Tibet. Acta Geologica Sinica, 2019, 93, 166-166.	0.8	0
102	IGCPâ€649 Project "Diamonds and Recycled Mantle― Acta Geologica Sinica, 2019, 93, 163-164.	0.8	0
103	Early Devonian Ultrapotassic Magmatism in the North China Craton: Geochemical and Isotopic Evidence for Subcontinental Lithospheric Mantle Metasomatism by Subducted Sediment–Derived Fluid. Acta Geologica Sinica, 2020, 94, 43-43.	0.8	0
104	Geological Evidence does not Support a Shallow Origin for Diamonds in Ophiolite. Acta Geologica Sinica, 2020, 94, 70-72.	0.8	0
105	Fingerprints of the Kerguelen Mantle Plume in Southern Tibet: Evidence from Early Cretaceous Magmatism in the Tethyan Himalaya. Acta Geologica Sinica, 2020, 94, 29-29.	0.8	0
106	The Characteristics and Significance of Peng Co Peridotites in the Middle Segment of Bangong Coâ€Nujiang Suture in Tibet. Acta Geologica Sinica, 2020, 94, 37-38.	0.8	0
107	Five Years of IGCP 649 Projectâ€Diamonds and Recycled Mantle. Acta Geologica Sinica, 2020, 94, 1-3.	0.8	0
108	Geochemistry and Geochronology of OIBâ€type Early Jurassic Magmatism in the Zhangguangcai Range, NE China, as a Result of Continental Backâ€arc Extension. Acta Geologica Sinica, 2020, 94, 13-13.	0.8	0

#	Article	lF	CITATIONS
109	The Boniniteâ€like Dolerites in the Xigaze Ophiolites, Tibet: Similar to the MORBâ€like Dolerites. Acta Geologica Sinica, 2020, 94, 73-75.	0.8	O
110	Accretion Processes of Oceanic Crust in Clowâ€spreading Ridges: Plagiogranite Perspective of the Xigaze Ophiolite, South Tibet. Acta Geologica Sinica, 0, , .	0.8	0