
Christopher G Sobey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/730032/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Apoptotic Mechanisms After Cerebral Ischemia. Stroke, 2009, 40, e331-9.	2.0	1,036
2	Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nature Reviews Drug Discovery, 2011, 10, 453-471.	46.4	763
3	Goals and practicalities of immunoblotting and immunohistochemistry: A guide for submission to the British Journal of Pharmacology. British Journal of Pharmacology, 2018, 175, 407-411.	5.4	519
4	Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Molecular Neurodegeneration, 2011, 6, 11.	10.8	431
5	Roles of Inflammation, Oxidative Stress, and Vascular Dysfunction in Hypertension. BioMed Research International, 2014, 2014, 1-11.	1.9	419
6	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Introduction and Other Protein Targets. British Journal of Pharmacology, 2019, 176, S1-S20.	5.4	295
7	Immune mechanisms of hypertension. Nature Reviews Immunology, 2019, 19, 517-532.	22.7	281
8	Pathogenesis of acute stroke and the role of inflammasomes. Ageing Research Reviews, 2013, 12, 941-966.	10.9	275
9	Direct evidence of a role for Nox2 in superoxide production, reduced nitric oxide bioavailability, and early atherosclerotic plaque formation in ApoE ^{â^'/â^'} mice. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H24-H32.	3.2	259
10	Endothelial NADPH oxidases: which NOX to target in vascular disease?. Trends in Endocrinology and Metabolism, 2014, 25, 452-463.	7.1	255
11	Evidence that NF-κB and MAPK Signaling Promotes NLRP Inflammasome Activation in Neurons Following Ischemic Stroke. Molecular Neurobiology, 2018, 55, 1082-1096.	4.0	245
12	Potassium Channel Function in Vascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 28-38.	2.4	222
13	NADPH oxidases in the vasculature: Molecular features, roles in disease and pharmacological inhibition. , 2008, 120, 254-291.		221
14	NADPH Oxidase Activity and Function Are Profoundly Greater in Cerebral Versus Systemic Arteries. Circulation Research, 2005, 97, 1055-1062.	4.5	198
15	Targeting Rho and Rho-kinase in the treatment of cardiovascular disease. Trends in Pharmacological Sciences, 2006, 27, 97-104.	8.7	188
16	Obligatory Role for B Cells in the Development of Angiotensin II–Dependent Hypertension. Hypertension, 2015, 66, 1023-1033.	2.7	185
17	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Introduction and Other Protein Targets. British Journal of Pharmacology, 2021, 178, S1-S26.	5.4	183
18	Immune Cell Infiltration in Malignant Middle Cerebral Artery Infarction: Comparison with Transient Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 450-459.	4.3	180

#	Article	IF	CITATIONS
19	A practical guide for transparent reporting of research on natural products in the <i>British Journal of Pharmacology</i> : Reproducibility of natural product research. British Journal of Pharmacology, 2020, 177, 2169-2178.	5.4	177
20	Importance of T Lymphocytes in Brain Injury, Immunodeficiency, and Recovery after Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 598-611.	4.3	166
21	Pharmacological inhibition of the NLRP3 inflammasome reduces blood pressure, renal damage, and dysfunction in salt-sensitive hypertension. Cardiovascular Research, 2019, 115, 776-787.	3.8	165
22	Oxidative stress and endothelial dysfunction in cerebrovascular disease. Frontiers in Bioscience - Landmark, 2011, 16, 1733.	3.0	160
23	Multiphoton imaging reveals a new leukocyte recruitment paradigm in the glomerulus. Nature Medicine, 2013, 19, 107-112.	30.7	154
24	SUBARACHNOID HAEMORRHAGE: WHAT HAPPENS TO THE CEREBRAL ARTERIES?. Clinical and Experimental Pharmacology and Physiology, 1998, 25, 867-876.	1.9	149
25	Mechanisms Contributing to Cerebral Infarct Size after Stroke: Gender, Reperfusion, T Lymphocytes, and Nox2-Derived Superoxide. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 1306-1317.	4.3	144
26	Mechanisms of Bradykinin-Induced Cerebral Vasodilatation in Rats. Stroke, 1997, 28, 2290-2295.	2.0	144
27	Increased NADPH-Oxidase Activity and Nox4 Expression During Chronic Hypertension Is Associated With Enhanced Cerebral Vasodilatation to NADPH In Vivo. Stroke, 2004, 35, 584-589.	2.0	143
28	Effect of Gender on NADPH-Oxidase Activity, Expression, and Function in the Cerebral Circulation. Stroke, 2007, 38, 2142-2149.	2.0	133
29	Role of Potassium Channels in Regulation of Cerebral Vascular Tone. Journal of Cerebral Blood Flow and Metabolism, 1998, 18, 1047-1063.	4.3	129
30	Evidence that NLRC4 inflammasome mediates apoptotic and pyroptotic microglial death following ischemic stroke. Brain, Behavior, and Immunity, 2019, 75, 34-47.	4.1	129
31	Evidence That Macrophages in Atherosclerotic Lesions Contain Angiotensin II. Circulation, 1998, 98, 800-807.	1.6	127
32	Bacteriophages in Natural and Artificial Environments. Pathogens, 2019, 8, 100.	2.8	124
33	Role of CCR2 in Inflammatory Conditions of the Central Nervous System. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1425-1429.	4.3	121
34	Evidence That Ly6C ^{hi} Monocytes Are Protective in Acute Ischemic Stroke by Promoting M2 Macrophage Polarization. Stroke, 2015, 46, 1929-1937.	2.0	121
35	Risk of Major Cardiovascular Events in People with Down Syndrome. PLoS ONE, 2015, 10, e0137093.	2.5	113
36	Evidence That Rho-Kinase Activity Contributes to Cerebral Vascular Tone In Vivo and Is Enhanced During Chronic Hypertension. Circulation Research, 2001, 88, 774-779.	4.5	112

#	Article	IF	CITATIONS
37	Endothelial Cell Mineralocorticoid Receptors Regulate Deoxycorticosterone/Salt-Mediated Cardiac Remodeling and Vascular Reactivity But Not Blood Pressure. Hypertension, 2014, 63, 1033-1040.	2.7	111
38	Endosomal NOX2 oxidase exacerbates virus pathogenicity and is a target for antiviral therapy. Nature Communications, 2017, 8, 69.	12.8	111
39	M2 macrophage accumulation in the aortic wall during angiotensin II infusion in mice is associated with fibrosis, elastin loss, and elevated blood pressure. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H906-H917.	3.2	109
40	Endothelium-dependent relaxation by G protein-coupled receptor 30 agonists in rat carotid arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H1055-H1061.	3.2	108
41	EFFECT OF GENDER AND SEX HORMONES ON VASCULAR OXIDATIVE STRESS. Clinical and Experimental Pharmacology and Physiology, 2007, 34, 1037-1043.	1.9	107
42	Novel isoforms of NADPH-oxidase in cerebral vascular control. , 2006, 111, 928-948.		106
43	Reversal of Vascular Macrophage Accumulation and Hypertension by a CCR2 Antagonist in Deoxycorticosterone/Salt-Treated Mice. Hypertension, 2012, 60, 1207-1212.	2.7	103
44	NADPH oxidase isoform selective regulation of endothelial cell proliferation and survival. Naunyn-Schmiedeberg's Archives of Pharmacology, 2009, 380, 193-204.	3.0	95
45	Nox isoforms in vascular pathophysiology: insights from transgenic and knockout mouse models. Redox Report, 2010, 15, 50-63.	4.5	92
46	Effects of a Novel Inhibitor of Guanylyl Cyclase on Dilator Responses of Mouse Cerebral Arterioles. Stroke, 1997, 28, 837-843.	2.0	89
47	Sex-Dependent Effects of G Protein–Coupled Estrogen Receptor Activity on Outcome After Ischemic Stroke. Stroke, 2014, 45, 835-841.	2.0	88
48	NADPH Oxidases as Regulators of Tumor Angiogenesis: Current and Emerging Concepts. Antioxidants and Redox Signaling, 2012, 16, 1229-1247.	5.4	86
49	Notch signaling and neuronal death in stroke. Progress in Neurobiology, 2018, 165-167, 103-116.	5.7	85
50	Isoflavones, Equol and Cardiovascular Disease: Pharmacological and Therapeutic Insights. Current Medicinal Chemistry, 2007, 14, 2824-2830.	2.4	79
51	Gender Influences Cerebral Vascular Responses to Angiotensin II Through Nox2-Derived Reactive Oxygen Species. Stroke, 2009, 40, 1091-1097.	2.0	79
52	Evidence for Selective Effects of Chronic Hypertension on Cerebral Artery Vasodilatation to Protease-Activated Receptor-2 Activation. Stroke, 1999, 30, 1933-1941.	2.0	77
53	Evidence that γ-Secretase-Mediated Notch Signaling Induces Neuronal Cell Death via the Nuclear Factor-κB-Bcl-2-Interacting Mediator of Cell Death Pathway in Ischemic Stroke. Molecular Pharmacology, 2011, 80, 23-31.	2.3	77
54	The opposing roles of NO and oxidative stress in cardiovascular disease. Pharmacological Research, 2017, 116, 57-69.	7.1	76

#	Article	IF	CITATIONS
55	Evidence that collaboration between HIF-1α and Notch-1 promotes neuronal cell death in ischemic stroke. Neurobiology of Disease, 2014, 62, 286-295.	4.4	75
56	Role of Nox isoforms in angiotensin II-induced oxidative stress and endothelial dysfunction in brain. Journal of Applied Physiology, 2012, 113, 184-191.	2.5	74
57	Targeting the Immune System for Ischemic Stroke. Trends in Pharmacological Sciences, 2021, 42, 96-105.	8.7	72
58	Pathophysiology of blood brain barrier dysfunction during chronic cerebral hypoperfusion in vascular cognitive impairment. Theranostics, 2022, 12, 1639-1658.	10.0	72
59	Evidence That Estrogen Suppresses Rho-Kinase Function in the Cerebral Circulation In Vivo. Stroke, 2004, 35, 2200-2205.	2.0	71
60	AIM2 inflammasome mediates hallmark neuropathological alterations and cognitive impairment in a mouse model of vascular dementia. Molecular Psychiatry, 2021, 26, 4544-4560.	7.9	71
61	Nox2 Oxidase Activity Accounts for the Oxidative Stress and Vasomotor Dysfunction in Mouse Cerebral Arteries following Ischemic Stroke. PLoS ONE, 2011, 6, e28393.	2.5	71
62	Nitroxyl (HNO) as a Vasoprotective Signaling Molecule. Antioxidants and Redox Signaling, 2011, 14, 1675-1686.	5.4	70
63	Importance of NOX1 for angiotensin II-induced cerebrovascular superoxide production and cortical infarct volume following ischemic stroke. Brain Research, 2009, 1286, 215-220.	2.2	67
64	Augmented Superoxide Production By Nox2-Containing NADPH Oxidase Causes Cerebral Artery Dysfunction During Hypercholesterolemia. Stroke, 2010, 41, 784-789.	2.0	67
65	Chemokine-related gene expression in the brain following ischemic stroke: No role for CXCR2 in outcome. Brain Research, 2011, 1372, 169-179.	2.2	67
66	Vasorelaxant and antioxidant activity of the isoflavone metabolite equol in carotid and cerebral arteries. Brain Research, 2007, 1141, 99-107.	2.2	65
67	Post-stroke inflammation and the potential efficacy of novel stem cell therapies: focus on amnion epithelial cells. Frontiers in Cellular Neuroscience, 2013, 6, 66.	3.7	65
68	Flow-Induced Cerebral Vasodilatation in Vivo Involves Activation of Phosphatidylinositol-3 Kinase, NADPH-Oxidase, and Nitric Oxide Synthase. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 836-845.	4.3	63
69	NADPH-oxidase activity is elevated in penumbral and non-ischemic cerebral arteries following stroke. Brain Research, 2006, 1111, 111-116.	2.2	63
70	NADPH oxidase activity is higher in cerebral versus systemic arteries of four animal species: role of Nox2. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H220-H225.	3.2	63
71	MouseMove: an open source program for semi-automated analysis of movement and cognitive testing in rodents. Scientific Reports, 2015, 5, 16171.	3.3	61
72	Activin and NADPH-oxidase in preeclampsia: insights from inÂvitro and murine studies. American Journal of Obstetrics and Gynecology, 2015, 212, 86.e1-86.e12.	1.3	60

#	Article	IF	CITATIONS
73	Vitamin D3 Supplementation Reduces Subsequent Brain Injury and Inflammation Associated with Ischemic Stroke. NeuroMolecular Medicine, 2018, 20, 147-159.	3.4	60
74	Role of inwardly rectifying K+ channels in K+-induced cerebral vasodilatation in vivo. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H2704-H2712.	3.2	59
75	Treatment with an interleukin-1 receptor antagonist mitigates neuroinflammation and brain damage after polytrauma. Brain, Behavior, and Immunity, 2017, 66, 359-371.	4.1	59
76	Recent Evidence for an Involvement of Rho-Kinase in Cerebral Vascular Disease. Stroke, 2006, 37, 2174-2180.	2.0	58
77	<scp>P</scp> in1 promotes neuronal death in stroke by stabilizing <scp>N</scp> otch intracellular domain. Annals of Neurology, 2015, 77, 504-516.	5.3	58
78	Aldosterone-induced oxidative stress and inflammation in the brain are mediated by the endothelial cell mineralocorticoid receptor. Brain Research, 2016, 1637, 146-153.	2.2	58
79	Vascular dysfunction in cerebrovascular disease: mechanisms and therapeutic intervention. Clinical Science, 2010, 119, 1-17.	4.3	57
80	Vascular cognitive impairment and Alzheimer's disease: role of cerebral hypoperfusion and oxidative stress. Naunyn-Schmiedeberg's Archives of Pharmacology, 2012, 385, 953-959.	3.0	55
81	Vitamin D Deficiency and the Risk of Cerebrovascular Disease. Antioxidants, 2020, 9, 327.	5.1	55
82	Angiotensin II Type 2 Receptor Stimulation Initiated After Stroke Causes Neuroprotection in Conscious Rats. Hypertension, 2012, 60, 1531-1537.	2.7	54
83	PI3Kδ inhibition reduces TNF secretion and neuroinflammation in a mouse cerebral stroke model. Nature Communications, 2014, 5, 3450.	12.8	54
84	Acute or Delayed Systemic Administration of Human Amnion Epithelial Cells Improves Outcomes in Experimental Stroke. Stroke, 2018, 49, 700-709.	2.0	53
85	Arachidonate dilates basilar artery by lipoxygenase-dependent mechanism and activation of K ⁺ channels. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 281, R246-R253.	1.8	51
86	Reactive Oxygen Species in the Cerebral Circulation: Are They All Bad?. Antioxidants and Redox Signaling, 2006, 8, 1113-1120.	5.4	51
87	Stroke Increases G Protein-Coupled Estrogen Receptor Expression in the Brain of Male but Not Female Mice. NeuroSignals, 2013, 21, 229-239.	0.9	51
88	Inhibitory effect of 4-aminopyridine on responses of the basilar artery to nitric oxide. British Journal of Pharmacology, 1999, 126, 1437-1443.	5.4	50
89	Effect of Short-Term Phytoestrogen Treatment in Male Rats on Nitric Oxide-Mediated Responses of Carotid and Cerebral Arteries: Comparison with 17β-Estradiol. Journal of Pharmacology and Experimental Therapeutics, 2004, 310, 135-140.	2.5	50
90	Activation of Protease-Activated Receptor-2 (PAR-2) Elicits Nitric Oxide–Dependent Dilatation of the Basilar Artery In Vivo. Stroke, 1998, 29, 1439-1444.	2.0	49

#	Article	IF	CITATIONS
91	Cerebral vascular effects of reactive oxygen species: Recent evidence for a role of NADPH-oxidase. Clinical and Experimental Pharmacology and Physiology, 2003, 30, 855-859.	1.9	49
92	Cell-Based Therapies for Stroke: Are We There Yet?. Frontiers in Neurology, 2019, 10, 656.	2.4	49
93	Pressor response to angiotensin II is enhanced in aged mice and associated with inflammation, vasoconstriction and oxidative stress. Aging, 2017, 9, 1595-1606.	3.1	49
94	Nox1 Oxidase Suppresses Influenza A Virus-Induced Lung Inflammation and Oxidative Stress. PLoS ONE, 2013, 8, e60792.	2.5	47
95	Evidence That the EphA2 Receptor Exacerbates Ischemic Brain Injury. PLoS ONE, 2013, 8, e53528.	2.5	46
96	Potassium channels mediate dilatation of cerebral arterioles in response to arachidonate. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 275, H1606-H1612.	3.2	43
97	Cerebrovascular Dysfunction After Subarachnoid Haemorrhage: Novel Mechanisms And Directions For Therapy. Clinical and Experimental Pharmacology and Physiology, 2001, 28, 926-929.	1.9	43
98	The Vascular Consequences of Metabolic Syndrome: Rodent Models, Endothelial Dysfunction, and Current Therapies. Frontiers in Pharmacology, 2020, 11, 148.	3.5	43
99	The role of inflammasomes in vascular cognitive impairment. Molecular Neurodegeneration, 2022, 17, 4.	10.8	43
100	Contribution Of Nitric Oxide, Cyclic Gmp And K+ Channels To Acetylcholine-Induced Dilatation Of Rat Conduit And Resistance Arteries. Clinical and Experimental Pharmacology and Physiology, 2000, 27, 34-40.	1.9	41
101	Effect of a Broad-Specificity Chemokine-Binding Protein on Brain Leukocyte Infiltration and Infarct Development. Stroke, 2015, 46, 537-544.	2.0	41
102	Updating the guidelines for data transparency in the British Journal of Pharmacology – data sharing and the use of scatter plots instead of bar charts. British Journal of Pharmacology, 2017, 174, 2801-2804.	5.4	41
103	Evidence that nitric oxide inhibits vascular inflammation and superoxide production via a p47 ^{phox} â€dependent mechanism in mice. Clinical and Experimental Pharmacology and Physiology, 2010, 37, 429-434.	1.9	40
104	Intravenous immunoglobulin protects neurons against amyloid betaâ€peptide toxicity and ischemic stroke by attenuating multiple cell death pathways. Journal of Neurochemistry, 2012, 122, 321-332.	3.9	40
105	Segmental Differences in the Roles of Rho-Kinase and Protein Kinase C in Mediating Vasoconstriction. Journal of Pharmacology and Experimental Therapeutics, 2006, 317, 791-796.	2.5	39
106	Evidence that neuronal Notch-1 promotes JNK/c-Jun activation and cell death following ischemic stress. Brain Research, 2014, 1586, 193-202.	2.2	39
107	IL-33 modulates inflammatory brain injury but exacerbates systemic immunosuppression following ischemic stroke. JCI Insight, 2018, 3, .	5.0	39
108	Anakinra reduces blood pressure and renal fibrosis in one kidney/DOCA/salt-induced hypertension. Pharmacological Research, 2017, 116, 77-86.	7.1	38

#	Article	IF	CITATIONS
109	Inwardly Rectifying Potassium Channels in the Regulation of Vascular Tone. Current Drug Targets, 2003, 4, 281-289.	2.1	38
110	Advanced atherosclerosis is associated with inflammation, vascular dysfunction and oxidative stress, but not hypertension. Pharmacological Research, 2017, 116, 70-76.	7.1	37
111	Interplay between Notch and p53 promotes neuronal cell death in ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1781-1795.	4.3	37
112	Selective Effects of Subarachnoid Hemorrhage on Cerebral Vascular Responses to 4-Aminopyridine in Rats. Stroke, 2000, 31, 2460-2465.	2.0	36
113	Myocardial ischaemia: What happens to the coronary arteries?. Trends in Pharmacological Sciences, 1993, 14, 448-453.	8.7	35
114	Reactive Oxygen Species in the Cerebral Circulation. Drugs, 2004, 64, 2143-2157.	10.9	35
115	Danger signals in stroke. Ageing Research Reviews, 2015, 24, 77-82.	10.9	35
116	Aged rats have an altered immune response and worse outcomes after traumatic brain injury. Brain, Behavior, and Immunity, 2019, 80, 536-550.	4.1	35
117	Brain immune cell composition and functional outcome after cerebral ischemia: comparison of two mouse strains. Frontiers in Cellular Neuroscience, 2014, 8, 365.	3.7	34
118	Chronic aldosterone administration causes Nox2-mediated increases in reactive oxygen species production and endothelial dysfunction in the cerebral circulation. Journal of Hypertension, 2014, 32, 1815-1821.	0.5	34
119	Transcriptome analysis reveals intermittent fasting-induced genetic changes in ischemic stroke. Human Molecular Genetics, 2018, 27, 1497-1513.	2.9	34
120	Opposing Roles of Endothelial and Smooth Muscle Phosphatidylinositol 3-Kinase in Vasoconstriction: Effects of Rho-Kinase and Hypertension. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 1248-1253.	2.5	33
121	The need to incorporate aged animals into the preclinical modeling of neurological conditions. Neuroscience and Biobehavioral Reviews, 2020, 109, 114-128.	6.1	33
122	Antibodies in the Pathogenesis of Hypertension. BioMed Research International, 2014, 2014, 1-9.	1.9	31
123	Role of soluble guanylate cyclase in dilator responses of the cerebral microcirculation. Brain Research, 1999, 821, 368-373.	2.2	30
124	Vasorelaxant and antiaggregatory actions of the nitroxyl donor isopropylamine NONOate are maintained in hypercholesterolemia. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H1405-H1414.	3.2	30
125	Epigenetic regulation of inflammation in stroke. Therapeutic Advances in Neurological Disorders, 2018, 11, 175628641877181.	3.5	30
126	Neuroprotective effect of an angiotensin receptor type 2 agonist following cerebral ischemia in vitro and in vivo. Experimental & Translational Stroke Medicine, 2012, 4, 16.	3.2	29

#	Article	IF	CITATIONS
127	Impaired cerebral vasodilator responses to NO and PDE V inhibition after subarachnoid hemorrhage. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H1718-H1724.	3.2	28
128	Ghrelin-Related Peptides Exert Protective Effects in the Cerebral Circulation of Male Mice Through a Nonclassical Ghrelin Receptor(s). Endocrinology, 2015, 156, 280-290.	2.8	28
129	Evidence for a detrimental role of TLR8 in ischemic stroke. Experimental Neurology, 2013, 250, 341-347.	4.1	27
130	Phase 1 Trial of Amnion Cell Therapy for Ischemic Stroke. Frontiers in Neurology, 2018, 9, 198.	2.4	27
131	Behavioral, axonal, and proteomic alterations following repeated mild traumatic brain injury: Novel insights using a clinically relevant rat model. Neurobiology of Disease, 2021, 148, 105151.	4.4	27
132	Bradykinin B2 receptor antagonism: a new direction for acute stroke therapy?. British Journal of Pharmacology, 2003, 139, 1369-1371.	5.4	26
133	Evidence That Expression of Inducible Nitric Oxide Synthase in Response to Endotoxin Is Augmented in Atherosclerotic Rabbits. Circulation Research, 1995, 77, 536-543.	4.5	26
134	Effect of a Selective Mas Receptor Agonist in Cerebral Ischemia In Vitro and In Vivo. PLoS ONE, 2015, 10, e0142087.	2.5	26
135	The anti-platelet effects of apocynin in mice are not mediated by inhibition of NADPH oxidase activity. Naunyn-Schmiedeberg's Archives of Pharmacology, 2010, 382, 377-384.	3.0	25
136	Mild Closed-Head Injury in Conscious Rats Causes Transient Neurobehavioral and Glial Disturbances: A Novel Experimental Model of Concussion. Journal of Neurotrauma, 2019, 36, 2260-2271.	3.4	25
137	Impaired endotheliumâ€dependent relaxation of dog coronary arteries after myocardial ischaemia and reperfusion: prevention by amlodipine, propranolol and allopurinol. British Journal of Pharmacology, 1992, 105, 557-562.	5.4	24
138	Inhibitory Effects of Protein Kinase C on Inwardly Rectifying K + - and ATP-Sensitive K + Channel-Mediated Responses of the Basilar Artery. Stroke, 2002, 33, 1692-1697.	2.0	24
139	Nitroxyl (HNO) suppresses vascular Nox2 oxidase activity. Free Radical Biology and Medicine, 2013, 60, 264-271.	2.9	24
140	Emerging roles of the \hat{I}^3 -secretase-notch axis in inflammation. , 2015, 147, 80-90.		24
141	IL-37 increases in patients after ischemic stroke and protects from inflammatory brain injury, motor impairment and lung infection in mice. Scientific Reports, 2019, 9, 6922.	3.3	24
142	Vascular expression, activity and function of indoleamine 2,3-dioxygenase-1 following cerebral ischaemia–reperfusion in mice. Naunyn-Schmiedeberg's Archives of Pharmacology, 2011, 383, 471-481.	3.0	23
143	IL-18 (Interleukin-18) Produced by Renal Tubular Epithelial Cells Promotes Renal Inflammation and Injury During Deoxycorticosterone/Salt-Induced Hypertension in Mice. Hypertension, 2021, 78, 1296-1309.	2.7	22
144	Reduced renal function may explain the higher prevalence of hyperuricemia in older people. Scientific Reports, 2021, 11, 1302.	3.3	22

#	Article	IF	CITATIONS
145	POTASSIUM CHANNELS AND THE CEREBRAL CIRCULATION. Clinical and Experimental Pharmacology and Physiology, 1996, 23, 1091-1095.	1.9	21
146	Chronic mevastatin modulates receptor-dependent vascular contraction in eNOS-deficient mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 287, R342-R348.	1.8	21
147	NADPH-Induced Contractions of Mouse Aorta Do Not Involve NADPH Oxidase: A Role for P2X Receptors. Journal of Pharmacology and Experimental Therapeutics, 2006, 317, 644-650.	2.5	21
148	Brain infarct volume after permanent focal ischemia is not dependent on Nox2 expression. Brain Research, 2012, 1483, 105-111.	2.2	21
149	NOX2 oxidase expressed in endosomes promotes cell proliferation and prostate tumour development. Oncotarget, 2018, 9, 35378-35393.	1.8	21
150	Evidence of CCR2-independent transmigration of Ly6C hi monocytes into the brain after permanent cerebral ischemia in mice. Brain Research, 2016, 1637, 118-127.	2.2	20
151	Amnion epithelial cells – a novel therapy for ischemic stroke?. Neural Regeneration Research, 2018, 13, 1346.	3.0	20
152	The IL-18/IL-18R1 signalling axis: Diagnostic and therapeutic potential in hypertension and chronic kidney disease. , 2022, 239, 108191.		20
153	Neuronal NO Mediates Cerebral Vasodilator Responses to K + in Hypertensive Rats. Hypertension, 2002, 39, 880-885.	2.7	19
154	Influence of Gender on K + -Induced Cerebral Vasodilatation. Stroke, 2004, 35, 747-752.	2.0	19
155	Self-assembling injectable peptide hydrogels for emerging treatment of ischemic stroke. Journal of Materials Chemistry B, 2019, 7, 3927-3943.	5.8	19
156	Hyperuricemia is independently associated with hypertension in men under 60 years in a general Chinese population. Journal of Human Hypertension, 2021, 35, 1020-1028.	2.2	19
157	Effect of Subarachnoid Hemorrhage on Cerebral Vasodilatation in Response to Activation of ATP-Sensitive K + Channels in Chronically Hypertensive Rats. Stroke, 1997, 28, 392-397.	2.0	19
158	Ischemic stroke and infection: A brief update on mechanisms and potential therapies. Biochemical Pharmacology, 2021, 193, 114768.	4.4	18
159	Intravenous immunoglobulin (IVIg) provides protection against endothelial cell dysfunction and death in ischemic stroke. Experimental & Translational Stroke Medicine, 2014, 6, 7.	3.2	17
160	Genome-Wide Transcriptome Analysis Reveals Intermittent Fasting-Induced Metabolic Rewiring in the Liver. Dose-Response, 2019, 17, 155932581987678.	1.6	16
161	Aldosterone-induced hypertension is sex-dependent, mediated by T cells and sensitive to GPER activation. Cardiovascular Research, 2021, 117, 960-970.	3.8	16
162	Allopurinol and amlodipine improve coronary vasodilatation after myocardial ischaemia and reperfusion in anaesthetized dogs. British Journal of Pharmacology, 1993, 108, 342-347.	5.4	15

#	Article	IF	CITATIONS
163	NOX2β: A Novel Splice Variant of NOX2 That Regulates NADPH Oxidase Activity in Macrophages. PLoS ONE, 2012, 7, e48326.	2.5	15
164	Effect of Short-term Regression of Atherosclerosis on Reactivity of Carotid and Retinal Arteries. Stroke, 1996, 27, 927-933.	2.0	15
165	A flow cytometric method for the analysis of macrophages in the vascular wall. Journal of Immunological Methods, 2013, 396, 33-43.	1.4	14
166	Stroke Severity, and Not Cerebral Infarct Location, Increases the Risk of Infection. Translational Stroke Research, 2020, 11, 387-401.	4.2	14
167	Aldosterone and the mineralocorticoid receptor in the cerebral circulation and stroke. Experimental & Translational Stroke Medicine, 2012, 4, 21.	3.2	13
168	Accumulation of serum lipids by vascular smooth muscle cells involves a macropinocytosis-like uptake pathway and is associated with the downregulation of the ATP-binding cassette transporter A1. Naunyn-Schmiedeberg's Archives of Pharmacology, 2013, 386, 1081-1093.	3.0	13
169	Vasoactive actions of nitroxyl (HNO) are preserved in resistance arteries in diabetes. Naunyn-Schmiedeberg's Archives of Pharmacology, 2017, 390, 397-408.	3.0	13
170	ENHANCED VASOCONSTRICTION BY SEROTONIN IN RABBIT CAROTID ARTERIES WITH ATHEROMA-LIKE LESIONS IN VIVO. Clinical and Experimental Pharmacology and Physiology, 1991, 18, 367-370.	1.9	12
171	LDL receptor blockade reduces mortality in a mouse model of ischaemic stroke without improving tissue-type plasminogen activator-induced brain haemorrhage: towards pre-clinical simulation of symptomatic ICH. Fluids and Barriers of the CNS, 2017, 14, 33.	5.0	12
172	microRNA-367-3p regulation of GPRC5A is suppressed in ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1300-1315.	4.3	12
173	Over-Expression of DSCR1 Protects against Post-Ischemic Neuronal Injury. PLoS ONE, 2012, 7, e47841.	2.5	10
174	Integrative epigenomic and transcriptomic analyses reveal metabolic switching by intermittent fasting in brain. GeroScience, 2022, 44, 2171-2194.	4.6	10
175	Calsenilin Contributes to Neuronal Cell Death in Ischemic Stroke. Brain Pathology, 2013, 23, 402-412.	4.1	9
176	Tumour Necrosis Factor a Augments the Release of an Endothelium-Dependent Vasoconstrictor from Human Polymorphonuclear Leukocytes. Journal of Cardiovascular Pharmacology, 1992, 19, 813-819.	1.9	9
177	Dietary Restriction and Epigenetics: Part I. Conditioning Medicine, 2019, 2, 284-299.	1.3	9
178	Ischaemia/Reperfusion Enhances Phenylephrine-Induced Contraction of Rabbit Aorta Due to Impairment of Neuronal Uptake. Journal of Cardiovascular Pharmacology, 1994, 23, 562-568.	1.9	8
179	Diet-induced vitamin D deficiency has no effect on acute post-stroke outcomes in young male mice. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1968-1978.	4.3	8
180	Adjustment for body mass index changes inverse associations of HDL-cholesterol with blood pressure and hypertension to positive associations. Journal of Human Hypertension, 2022, 36, 570-579.	2.2	8

#	Article	IF	CITATIONS
181	G proteinâ€coupled estrogen receptor 1: a novel target to treat cardiovascular disease in a sexâ€specific manner?. British Journal of Pharmacology, 2021, 178, 3849-3863.	5.4	7
182	Knockout Blow for Channel Identity Crisis. Circulation Research, 2000, 87, 83-84.	4.5	6
183	Selective inhibition of NADPH-oxidase isoforms as a therapeutic strategy in hypertension. Drug Discovery Today: Therapeutic Strategies, 2005, 2, 187-192.	0.5	6
184	<scp><i>Chlamydia pneumoniae</i></scp> induces a proâ€inflammatory phenotype in murine vascular smooth muscle cells independently of elevating reactive oxygen species. Clinical and Experimental Pharmacology and Physiology, 2012, 39, 218-226.	1.9	6
185	Hippocampal transcriptome profiling reveals common disease pathways in chronic hypoperfusion and aging. Aging, 2021, 13, 14651-14674.	3.1	5
186	Tumour Necrosis Factor a Augments the Release of an Endothelium-Dependent Vasoconstrictor from Human Polymorphonuclear Leukocytes. Journal of Cardiovascular Pharmacology, 1992, 20, 813-819.	1.9	5
187	Prevention of ischaemia-induced coronary vascular dysfunction. International Journal of Cardiology, 1997, 62, S91-S99.	1.7	4
188	Novel mechanisms contributing to cerebral vascular dysfunction during chronic hypertension. Current Hypertension Reports, 2001, 3, 517-523.	3.5	4
189	Neurogenic Atherosclerosis Mediated by Neuropeptide Y. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 1137-1139.	2.4	4
190	Epigenetic Regulation by Dietary Restriction: Part II. Conditioning Medicine, 2019, 2, 300-310.	1.3	4
191	Reduced cerebrovascular remodeling and functional impairment in spontaneously hypertensive rats following combined treatment with suboptimal doses of telmisartan and ramipril: is less really more?. Journal of Hypertension, 2010, 28, 1384-1389.	0.5	3
192	Ghrelinâ€related peptides do not modulate vasodilator nitric oxide production or superoxide levels in mouse systemic arteries. Clinical and Experimental Pharmacology and Physiology, 2016, 43, 468-475.	1.9	3
193	Local Injection of Endothelin-1 in the Early Neonatal Rat Brain Models Ischemic Damage Associated with Motor Impairment and Diffuse Loss in Brain Volume. Neuroscience, 2018, 393, 110-122.	2.3	3
194	Editorial: Stem Cells as Targeted Drug Delivery Vehicles. Frontiers in Pharmacology, 2020, 11, 614730.	3.5	3
195	Systemic treatment with human amnion epithelial cells after experimental traumatic brain injury. Brain, Behavior, & Immunity - Health, 2020, 5, 100072.	2.5	3
196	Oxidative stress and endothelial dysfunction. , 2010, , 37-64.		3
197	Cell-specific mineralocorticoid receptors: future therapeutic targets for stroke?. Neural Regeneration Research, 2016, 11, 1230.	3.0	3
198	Bim Deletion Reduces Functional Deficits Following Ischemic Stroke in Association with Modulation of Apoptosis and Inflammation. NeuroMolecular Medicine, 2022, , 1.	3.4	3

#	Article	IF	CITATIONS
199	CEACAM1. Circulation Research, 2013, 113, 952-953.	4.5	2
200	Vascular Biology and Atherosclerosis of Cerebral Vessels. , 2016, , 3-12.		2
201	Diagnosing and Treating Hypertensive Disorders of Pregnancy?. Hypertension, 2017, 70, 884-886.	2.7	2
202	Immunity and hypertension: New targets to lighten the pressure. British Journal of Pharmacology, 2019, 176, 1813-1817.	5.4	2
203	The BJP expects authors to share data. British Journal of Pharmacology, 2019, 176, 4595-4598.	5.4	2
204	Editorial policy regarding the citation of preprints in the <i>British Journal of Pharmacology</i> (<i>BJP</i>). British Journal of Pharmacology, 2021, 178, 3605-3610.	5.4	2
205	VASOCONSTRICTOR RESPONSES TO POLYMORPHONUCLEAR LEUCOCYTES FROM ATHEROSCLEROTIC RABBITS. Clinical and Experimental Pharmacology and Physiology, 1994, 21, 153-156.	1.9	1
206	Signalling pathways activated by hydrogen peroxide in vascular smooth muscle. Journal of Hypertension, 2005, 23, 1961-1962.	0.5	1
207	Immune Mechanisms in Vascular Disease and Stroke. BioMed Research International, 2014, 2014, 1-2.	1.9	1
208	Angiotensin (1–7) as a Therapy to Prevent Rupture of Intracranial Aneurysms?. Hypertension, 2014, 64, 222-223.	2.7	1
209	Role of Oxidative Stress in Hypertension. Oxidative Stress in Applied Basic Research and Clinical Practice, 2017, , 59-78.	0.4	1
210	Estrogen: reducing the pressure by arginine vasopressin. Cardiovascular Research, 2020, 117, 2143-2144.	3.8	1
211	Vascular Biology and Atherosclerosis of Cerebral Arteries. , 2004, , 763-774.		1
212	Suramin inhibits NADPH oxidase activity in cerebral arteries after subarachnoid hemorrhage. FASEB Journal, 2006, 20, A725.	0.5	1
213	How good are our models of cardiovascular disease?. British Journal of Pharmacology, 2022, 179, 745-747.	5.4	1
214	Radicals spark interest in cerebral vasodilator mechanisms. Focus on "TNF-α dilates cerebral arteries via NAD(P)H oxidase-dependent Ca2+ spark activation― American Journal of Physiology - Cell Physiology, 2006, 290, C950-C951.	4.6	0
215	Vascular Biology and Atherosclerosis of Cerebral Arteries. , 2011, , 3-15.		0
216	Notch receptors in GtoPdb v.2021.2. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	0

#	Article	IF	CITATIONS
217	Cerebral Vascular Biology in Health and Disease. , 2022, , 3-10.e4.		0
218	Large-Scale Multivariate Analysis to Interrogate an Animal Model of Stroke: Novel Insights Into Poststroke Pathology. Stroke, 2021, 52, 3661-3669.	2.0	0
219	NADPH-oxidase activity and function is enhanced in the cerebral circulation and influenced by gender. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S205-S205.	4.3	0
220	Flow-induced cerebral vasodilatation involves activation of PI3-kinase and production of reactive oxygen species. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S162-S162.	4.3	0
221	Modulation of cerebral vascular tone by NADPH oxidase. FASEB Journal, 2006, 20, A725.	0.5	0
222	Differential roles of rhoâ€kinase and protein kinase C (PKC) in contractile responses of rat aorta and mesenteric artery. FASEB Journal, 2006, 20, A662.	0.5	0
223	VASODILATOR AND ANTIOXIDANT EFFECTS OF THE ISOFLAVONE METABOLITE EQUOL IN HYPERTENSIVE RATS. FASEB Journal, 2006, 20, A1109.	0.5	0
224	Gender influences NADPH oxidase in the cerebral circulation. FASEB Journal, 2007, 21, A1170.	0.5	0
225	Endothelial cell proliferation is dependent on Nox4â€containing NADPH oxidases whereas Nox2 is antiâ€apoptotic. FASEB Journal, 2008, 22, .	0.5	0
226	Cerebral infarct size is genderâ€dependent following transient but not permanent middle cerebral artery occlusion in mice. FASEB Journal, 2008, 22, 719.7.	0.5	0
227	Apocynin reduces infarct volume following cerebral ischemia in mice. FASEB Journal, 2008, 22, 913.4.	0.5	0
228	C.pneumoniae infection increases NADPH oxidase activity in vascular smooth muscle cells. FASEB Journal, 2009, 23, LB388.	0.5	0
229	Excessive Superoxide Production And Endothelial Dysfunction In Cerebral Arteries Of Atherosclerotic Mice Occur In The Absence Of Lesions And Are Due To The Activity Of Nox2 ontaining NADPH Oxidase. FASEB Journal, 2009, 23, 574.4.	0.5	0
230	Potential Efficacy of Amnion Epithelial Cells to Treat Post-stroke Inflammation. , 2014, , 219-229.		0
231	Reactive Oxygen Species and Cerebrovascular Diseases. , 2014, , 1895-1924.		0
232	G protein-coupled estrogen receptors: novel therapeutic targets in aldosterone-induced hypertension?. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO1-2-54.	0.0	0
233	A Crucial Role for Interleukinâ€18/ILâ€18R Signalling Axis in the Development of Renal Inflammation and Elevated Blood Pressure in 1 Kidney/DOCA/Saltâ€Induced Hypertension. FASEB Journal, 2018, 32, 718.15.	0.5	0
234	Aldosteroneâ€Induced Hypertension is T Lymphocyteâ€Dependent and Attenuated by Activation of the G Proteinâ€Coupled Estrogen Receptor 1. FASEB Journal, 2018, 32, 718.14.	0.5	0

#	Article	IF	CITATIONS
235	Renal Microvascular Rarefaction Accompanies Interstitial Fibrosis and Tubular Damage in One Kidneyâ€Deoxycorticosterone Acetateâ€Salt (1K/DOCA/salt)â€Dependent Hypertension. FASEB Journal, 2019, 33, lb533.	0.5	0
236	Differential Effects of BAFF Neutralization and BAFF Receptor Inhibition on Angiotensin IIâ€Induced Hypertension in Mice. FASEB Journal, 2019, 33, 819.15.	0.5	0
237	Notch receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	0